返回介绍

solution / 0300-0399 / 0329.Longest Increasing Path in a Matrix / README

发布于 2024-06-17 01:04:02 字数 6341 浏览 0 评论 0 收藏 0

329. 矩阵中的最长递增路径

English Version

题目描述

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能对角线 方向上移动或移动到 边界外(即不允许环绕)。

 

示例 1:

输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4 
解释:最长递增路径为 [1, 2, 6, 9]

示例 2:

输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4 
解释:最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

示例 3:

输入:matrix = [[1]]
输出:1

 

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 <= matrix[i][j] <= 231 - 1

解法

方法一:记忆化搜索

我们设计一个函数 $dfs(i, j)$,它表示从矩阵中的坐标 $(i, j)$ 出发,可以得到的最长递增路径的长度。那么答案就是 $\max_{i, j} \textit{dfs}(i, j)$。

函数 $dfs(i, j)$ 的执行逻辑如下:

  • 如果 $(i, j)$ 已经被访问过,直接返回 $\textit{f}(i, j)$;
  • 否则对 $(i, j)$ 进行搜索,搜索四个方向的坐标 $(x, y)$,如果满足 $0 \le x < m, 0 \le y < n$ 以及 $matrix[x][y] \gt matrix[i][j]$,那么对 $(x, y)$ 进行搜索。搜索结束后,将 $\textit{f}(i, j)$ 更新为 $\textit{f}(i, j) = \max(\textit{f}(i, j), \textit{f}(x, y) + 1)$。最后返回 $\textit{f}(i, j)$。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。

相似题目:

class Solution:
  def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
    @cache
    def dfs(i: int, j: int) -> int:
      ans = 0
      for a, b in pairwise((-1, 0, 1, 0, -1)):
        x, y = i + a, j + b
        if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
          ans = max(ans, dfs(x, y))
      return ans + 1

    m, n = len(matrix), len(matrix[0])
    return max(dfs(i, j) for i in range(m) for j in range(n))
class Solution {
  private int m;
  private int n;
  private int[][] matrix;
  private int[][] f;

  public int longestIncreasingPath(int[][] matrix) {
    m = matrix.length;
    n = matrix[0].length;
    f = new int[m][n];
    this.matrix = matrix;
    int ans = 0;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans = Math.max(ans, dfs(i, j));
      }
    }
    return ans;
  }

  private int dfs(int i, int j) {
    if (f[i][j] != 0) {
      return f[i][j];
    }
    int[] dirs = {-1, 0, 1, 0, -1};
    for (int k = 0; k < 4; ++k) {
      int x = i + dirs[k];
      int y = j + dirs[k + 1];
      if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
        f[i][j] = Math.max(f[i][j], dfs(x, y));
      }
    }
    return ++f[i][j];
  }
}
class Solution {
public:
  int longestIncreasingPath(vector<vector<int>>& matrix) {
    int m = matrix.size(), n = matrix[0].size();
    int f[m][n];
    memset(f, 0, sizeof(f));
    int ans = 0;
    int dirs[5] = {-1, 0, 1, 0, -1};

    function<int(int, int)> dfs = [&](int i, int j) -> int {
      if (f[i][j]) {
        return f[i][j];
      }
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
          f[i][j] = max(f[i][j], dfs(x, y));
        }
      }
      return ++f[i][j];
    };

    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans = max(ans, dfs(i, j));
      }
    }
    return ans;
  }
};
func longestIncreasingPath(matrix [][]int) (ans int) {
  m, n := len(matrix), len(matrix[0])
  f := make([][]int, m)
  for i := range f {
    f[i] = make([]int, n)
  }
  dirs := [5]int{-1, 0, 1, 0, -1}
  var dfs func(i, j int) int
  dfs = func(i, j int) int {
    if f[i][j] != 0 {
      return f[i][j]
    }
    for k := 0; k < 4; k++ {
      x, y := i+dirs[k], j+dirs[k+1]
      if 0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j] {
        f[i][j] = max(f[i][j], dfs(x, y))
      }
    }
    f[i][j]++
    return f[i][j]
  }
  for i := 0; i < m; i++ {
    for j := 0; j < n; j++ {
      ans = max(ans, dfs(i, j))
    }
  }
  return
}
function longestIncreasingPath(matrix: number[][]): number {
  const m = matrix.length;
  const n = matrix[0].length;
  const f: number[][] = Array(m)
    .fill(0)
    .map(() => Array(n).fill(0));
  const dirs = [-1, 0, 1, 0, -1];
  const dfs = (i: number, j: number): number => {
    if (f[i][j] > 0) {
      return f[i][j];
    }
    for (let k = 0; k < 4; ++k) {
      const x = i + dirs[k];
      const y = j + dirs[k + 1];
      if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
        f[i][j] = Math.max(f[i][j], dfs(x, y));
      }
    }
    return ++f[i][j];
  };
  let ans = 0;
  for (let i = 0; i < m; ++i) {
    for (let j = 0; j < n; ++j) {
      ans = Math.max(ans, dfs(i, j));
    }
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文