返回介绍

solution / 1900-1999 / 1959.Minimum Total Space Wasted With K Resizing Operations / README_EN

发布于 2024-06-17 01:03:12 字数 5909 浏览 0 评论 0 收藏 0

1959. Minimum Total Space Wasted With K Resizing Operations

中文文档

Description

You are currently designing a dynamic array. You are given a 0-indexed integer array nums, where nums[i] is the number of elements that will be in the array at time i. In addition, you are given an integer k, the maximum number of times you can resize the array (to any size).

The size of the array at time t, sizet, must be at least nums[t] because there needs to be enough space in the array to hold all the elements. The space wasted at time t is defined as sizet - nums[t], and the total space wasted is the sum of the space wasted across every time t where 0 <= t < nums.length.

Return _the minimum total space wasted if you can resize the array at most_ k _times_.

Note: The array can have any size at the start and does not count towards the number of resizing operations.

 

Example 1:

Input: nums = [10,20], k = 0
Output: 10
Explanation: size = [20,20].
We can set the initial size to be 20.
The total wasted space is (20 - 10) + (20 - 20) = 10.

Example 2:

Input: nums = [10,20,30], k = 1
Output: 10
Explanation: size = [20,20,30].
We can set the initial size to be 20 and resize to 30 at time 2. 
The total wasted space is (20 - 10) + (20 - 20) + (30 - 30) = 10.

Example 3:

Input: nums = [10,20,15,30,20], k = 2
Output: 15
Explanation: size = [10,20,20,30,30].
We can set the initial size to 10, resize to 20 at time 1, and resize to 30 at time 3.
The total wasted space is (10 - 10) + (20 - 20) + (20 - 15) + (30 - 30) + (30 - 20) = 15.

 

Constraints:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 106
  • 0 <= k <= nums.length - 1

Solutions

Solution 1

class Solution:
  def minSpaceWastedKResizing(self, nums: List[int], k: int) -> int:
    k += 1
    n = len(nums)
    g = [[0] * n for _ in range(n)]
    for i in range(n):
      s = mx = 0
      for j in range(i, n):
        s += nums[j]
        mx = max(mx, nums[j])
        g[i][j] = mx * (j - i + 1) - s
    f = [[inf] * (k + 1) for _ in range(n + 1)]
    f[0][0] = 0
    for i in range(1, n + 1):
      for j in range(1, k + 1):
        for h in range(i):
          f[i][j] = min(f[i][j], f[h][j - 1] + g[h][i - 1])
    return f[-1][-1]
class Solution {
  public int minSpaceWastedKResizing(int[] nums, int k) {
    ++k;
    int n = nums.length;
    int[][] g = new int[n][n];
    for (int i = 0; i < n; ++i) {
      int s = 0, mx = 0;
      for (int j = i; j < n; ++j) {
        s += nums[j];
        mx = Math.max(mx, nums[j]);
        g[i][j] = mx * (j - i + 1) - s;
      }
    }
    int[][] f = new int[n + 1][k + 1];
    int inf = 0x3f3f3f3f;
    for (int i = 0; i < f.length; ++i) {
      Arrays.fill(f[i], inf);
    }
    f[0][0] = 0;
    for (int i = 1; i <= n; ++i) {
      for (int j = 1; j <= k; ++j) {
        for (int h = 0; h < i; ++h) {
          f[i][j] = Math.min(f[i][j], f[h][j - 1] + g[h][i - 1]);
        }
      }
    }
    return f[n][k];
  }
}
class Solution {
public:
  int minSpaceWastedKResizing(vector<int>& nums, int k) {
    ++k;
    int n = nums.size();
    vector<vector<int>> g(n, vector<int>(n));
    for (int i = 0; i < n; ++i) {
      int s = 0, mx = 0;
      for (int j = i; j < n; ++j) {
        mx = max(mx, nums[j]);
        s += nums[j];
        g[i][j] = mx * (j - i + 1) - s;
      }
    }
    int inf = 0x3f3f3f3f;
    vector<vector<int>> f(n + 1, vector<int>(k + 1, inf));
    f[0][0] = 0;
    for (int i = 1; i <= n; ++i) {
      for (int j = 1; j <= k; ++j) {
        for (int h = 0; h < i; ++h) {
          f[i][j] = min(f[i][j], f[h][j - 1] + g[h][i - 1]);
        }
      }
    }
    return f[n][k];
  }
};
func minSpaceWastedKResizing(nums []int, k int) int {
  k++
  n := len(nums)
  g := make([][]int, n)
  for i := range g {
    g[i] = make([]int, n)
  }
  for i := 0; i < n; i++ {
    s, mx := 0, 0
    for j := i; j < n; j++ {
      s += nums[j]
      mx = max(mx, nums[j])
      g[i][j] = mx*(j-i+1) - s
    }
  }
  f := make([][]int, n+1)
  inf := 0x3f3f3f3f
  for i := range f {
    f[i] = make([]int, k+1)
    for j := range f[i] {
      f[i][j] = inf
    }
  }
  f[0][0] = 0
  for i := 1; i <= n; i++ {
    for j := 1; j <= k; j++ {
      for h := 0; h < i; h++ {
        f[i][j] = min(f[i][j], f[h][j-1]+g[h][i-1])
      }
    }
  }
  return f[n][k]
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文