返回介绍

solution / 1500-1599 / 1505.Minimum Possible Integer After at Most K Adjacent Swaps On Digits / README_EN

发布于 2024-06-17 01:03:19 字数 6963 浏览 0 评论 0 收藏 0

1505. Minimum Possible Integer After at Most K Adjacent Swaps On Digits

中文文档

Description

You are given a string num representing the digits of a very large integer and an integer k. You are allowed to swap any two adjacent digits of the integer at most k times.

Return _the minimum integer you can obtain also as a string_.

 

Example 1:

Input: num = "4321", k = 4
Output: "1342"
Explanation: The steps to obtain the minimum integer from 4321 with 4 adjacent swaps are shown.

Example 2:

Input: num = "100", k = 1
Output: "010"
Explanation: It's ok for the output to have leading zeros, but the input is guaranteed not to have any leading zeros.

Example 3:

Input: num = "36789", k = 1000
Output: "36789"
Explanation: We can keep the number without any swaps.

 

Constraints:

  • 1 <= num.length <= 3 * 104
  • num consists of only digits and does not contain leading zeros.
  • 1 <= k <= 109

Solutions

Solution 1

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  @staticmethod
  def lowbit(x):
    return x & -x

  def update(self, x, delta):
    while x <= self.n:
      self.c[x] += delta
      x += BinaryIndexedTree.lowbit(x)

  def query(self, x):
    s = 0
    while x:
      s += self.c[x]
      x -= BinaryIndexedTree.lowbit(x)
    return s


class Solution:
  def minInteger(self, num: str, k: int) -> str:
    pos = defaultdict(deque)
    for i, v in enumerate(num, 1):
      pos[int(v)].append(i)
    ans = []
    n = len(num)
    tree = BinaryIndexedTree(n)
    for i in range(1, n + 1):
      for v in range(10):
        q = pos[v]
        if q:
          j = q[0]
          dist = tree.query(n) - tree.query(j) + j - i
          if dist <= k:
            k -= dist
            q.popleft()
            ans.append(str(v))
            tree.update(j, 1)
            break
    return ''.join(ans)
class Solution {
  public String minInteger(String num, int k) {
    Queue<Integer>[] pos = new Queue[10];
    for (int i = 0; i < 10; ++i) {
      pos[i] = new ArrayDeque<>();
    }
    int n = num.length();
    for (int i = 0; i < n; ++i) {
      pos[num.charAt(i) - '0'].offer(i + 1);
    }
    StringBuilder ans = new StringBuilder();
    BinaryIndexedTree tree = new BinaryIndexedTree(n);
    for (int i = 1; i <= n; ++i) {
      for (int v = 0; v < 10; ++v) {
        if (!pos[v].isEmpty()) {
          Queue<Integer> q = pos[v];
          int j = q.peek();
          int dist = tree.query(n) - tree.query(j) + j - i;
          if (dist <= k) {
            k -= dist;
            q.poll();
            ans.append(v);
            tree.update(j, 1);
            break;
          }
        }
      }
    }
    return ans.toString();
  }
}

class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    c = new int[n + 1];
  }

  public void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }

  public static int lowbit(int x) {
    return x & -x;
  }
}
class BinaryIndexedTree {
public:
  int n;
  vector<int> c;

  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }

  int lowbit(int x) {
    return x & -x;
  }
};

class Solution {
public:
  string minInteger(string num, int k) {
    vector<queue<int>> pos(10);
    int n = num.size();
    for (int i = 0; i < n; ++i) pos[num[i] - '0'].push(i + 1);
    BinaryIndexedTree* tree = new BinaryIndexedTree(n);
    string ans = "";
    for (int i = 1; i <= n; ++i) {
      for (int v = 0; v < 10; ++v) {
        auto& q = pos[v];
        if (!q.empty()) {
          int j = q.front();
          int dist = tree->query(n) - tree->query(j) + j - i;
          if (dist <= k) {
            k -= dist;
            q.pop();
            ans += (v + '0');
            tree->update(j, 1);
            break;
          }
        }
      }
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
  return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
  for x <= this.n {
    this.c[x] += delta
    x += this.lowbit(x)
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    s += this.c[x]
    x -= this.lowbit(x)
  }
  return s
}

func minInteger(num string, k int) string {
  pos := make([][]int, 10)
  for i, c := range num {
    pos[c-'0'] = append(pos[c-'0'], i+1)
  }
  n := len(num)
  tree := newBinaryIndexedTree(n)
  var ans strings.Builder
  for i := 1; i <= n; i++ {
    for v := 0; v < 10; v++ {
      if len(pos[v]) > 0 {
        j := pos[v][0]
        dist := tree.query(n) - tree.query(j) + j - i
        if dist <= k {
          k -= dist
          pos[v] = pos[v][1:]
          ans.WriteByte(byte(v + '0'))
          tree.update(j, 1)
          break
        }
      }
    }
  }
  return ans.String()
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文