六、阈值
欢迎阅读另一个 OpenCV 教程。在本教程中,我们将介绍图像和视频分析的阈值。阈值的思想是进一步简化视觉数据的分析。首先,你可以转换为灰度,但是你必须考虑灰度仍然有至少 255 个值。阈值可以做的事情,在最基本的层面上,是基于阈值将所有东西都转换成白色或黑色。比方说,我们希望阈值为 125(最大为 255),那么 125 以下的所有内容都将被转换为 0 或黑色,而高于 125 的所有内容都将被转换为 255 或白色。如果你像平常一样转换成灰度,你会变成白色和黑色。如果你不转换灰度,你会得到二值化的图片,但会有颜色。
虽然这听起来不错,但通常不是。我们将在这里介绍多个示例和不同类型的阈值来说明这一点。我们将使用下面的图片作为我们的示例图片,但可以随意使用你自己的图片:
这个书的图片就是个很好的例子,说明为什么一个人可能需要阈值。 首先,背景根本没有白色,一切都是暗淡的,而且一切都是变化的。 有些部分很容易阅读,另一部分则非常暗,需要相当多的注意力才能识别出来。 首先,我们尝试一个简单的阈值:
retval, threshold = cv2.threshold(img, 10, 255, cv2.THRESH_BINARY)
二元阈值是个简单的“是或不是”的阈值,其中像素为 255 或 0。在很多情况下,这是白色或黑色,但我们已经为我们的图像保留了颜色,所以它仍然是彩色的。 这里的第一个参数是图像。 下一个参数是阈值,我们选择 10。下一个是最大值,我们选择为 255。最后是阈值类型,我们选择了THRESH_BINARY
。 通常情况下,10 的阈值会有点差。 我们选择 10,因为这是低光照的图片,所以我们选择低的数字。 通常 125-150 左右的东西可能效果最好。
import cv2
import numpy as np
img = cv2.imread('bookpage.jpg')
retval, threshold = cv2.threshold(img, 12, 255, cv2.THRESH_BINARY)
cv2.imshow('original',img)
cv2.imshow('threshold',threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果:
现在的图片稍微更便于阅读了,但还是有点乱。 从视觉上来说,这样比较好,但是仍然难以使用程序来分析它。 让我们看看我们是否可以进一步简化。
首先,让我们灰度化图像,然后使用一个阈值:
import cv2
import numpy as np
grayscaled = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
retval, threshold = cv2.threshold(grayscaled, 10, 255, cv2.THRESH_BINARY)
cv2.imshow('original',img)
cv2.imshow('threshold',threshold)
cv2.waitKey(0)
cv2.destroyAllWindows()
更简单,但是我们仍然在这里忽略了很多背景。 接下来,我们可以尝试自适应阈值,这将尝试改变阈值,并希望弄清楚弯曲的页面。
import cv2
import numpy as np
th = cv2.adaptiveThreshold(grayscaled, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 115, 1)
cv2.imshow('original',img)
cv2.imshow('Adaptive threshold',th)
cv2.waitKey(0)
cv2.destroyAllWindows()
还有另一个版本的阈值,可以使用,叫做大津阈值。 它在这里并不能很好发挥作用,但是:
retval2,threshold2 = cv2.threshold(grayscaled,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow('original',img)
cv2.imshow('Otsu threshold',threshold2)
cv2.waitKey(0)
cv2.destroyAllWindows()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论