返回介绍

入门

基础

进阶

11. 进制转换

发布于 2024-10-07 02:37:14 字数 9509 浏览 0 评论 0 收藏 0

进制转换

  • 10 进制转 2 进制

  • 除2取余, 余数倒序; 得到的序列就是二进制表示形式

  • 例如: 将十进制(97) 10转换为二进制数

  • 2 进制转 10 进制

    • 每一位二进制进制位的值 * 2的当前索引次幂; 再将所有位求出的值相加
    • 例如: 将二进制01100100转换为十进制
    01100100
    索引从右至左, 从零开始
    第0位: 0 * 2^0 = 0;
    第1位: 0 * 2^1 = 0;
    第2位: 1 * 2^2 = 4;
    第3位: 0 * 2^3 = 0;
    第4位: 0 * 2^4 = 0;
    第5位: 1 * 2^5 = 32;
    第6位: 1 * 2^6 = 64;
    第7位: 0 * 2^7 = 0;
    最终结果为: 0 + 0 + 4 + 0 + 0 + 32 + 64 + 0 = 100
    

  • 2 进制转 8 进制

    • 三个二进制位代表一个八进制位, 因为3个二进制位的最大值是7,而八进制是逢8进1
    • 例如: 将二进制01100100转换为八进制数
    从右至左每3位划分为8进制的1位, 不够前面补0
    001 100 100
    第0位: 100 等于十进制 4
    第1位: 100 等于十进制 4
    第2位: 001 等于十进制 1
    最终结果: 144就是转换为8进制的值
    

  • 2 进制转 16 进制

    • 四个二进制位代表一个十六进制位,因为4个二进制位的最大值是15,而十六进制是逢16进1
    • 例如: 将二进制01100100转换为十六进制数
    从右至左每4位划分为16进制的1位, 不够前面补0
    0110 0100
    第0位: 0100 等于十进制 4
    第1位: 0110 等于十进制 6
    最终结果: 64就是转换为16进制的值
    

  • 其它进制转换为十进制

    • 系数 * 基数 ^ 索引 之和
        十进制           -->          十进制
       12345   =  10000 + 2000 + 300 + 40 + 5
               =  (1 * 10 ^ 4)  + (2 * 10 ^ 3) + (3 * 10 ^ 2) + (4 * 10 ^ 1) + (5 * 10 ^ 0)
               =  (1 * 10000) + (2 + 1000) + (3 * 100) + (4 * 10) + (5 * 1)
               =  10000 + 2000 + 300 + 40 + 5
               =  12345
    
       规律:
       其它进制转换为十进制的结果 = 系数 * 基数 ^ 索引 之和
    
       系数: 每一位的值就是一个系数 
       基数: 从x进制转换到十进制, 那么x就是基数
       索引: 从最低位以0开始, 递增的数
    
       二进制        -->      十进制
       543210
       101101 = (1 * 2 ^ 5) + (0 * 2 ^ 4) + (1 * 2 ^ 3) + (1 * 2 ^ 2) + (0 * 2 ^ 1) + (1 * 2 ^ 0)
              = 32 + 0 + 8 + 4 + 0 + 1
              = 45
    
       八进制        -->     十进制
       016  =   (0 * 8 ^ 2) + (1 * 8 ^ 1) + (6 * 8 ^ 0)
            =    0  + 8 + 6
            =    14
    
       十六进制      -->      十进制
       0x11f =  (1 * 16 ^ 2) + (1 * 16 ^ 1) + (15 * 16 ^ 0)
             =   256  + 16 + 15
             =   287
    

  • 十进制快速转换为其它进制

    • 十进制除以基数取余, 倒叙读取

    ```c 十进制 --> 二进制 100 --> 1100100 100 / 2 = 50 0 50 / 2 = 25 0 25 / 2 = 12 1 12 / 2 = 6 0 6 / 2 = 3 0 3 / 2 = 1 1 1 / 2 = 0 1

 十进制        -->     八进制
 100          -->     144
 100 / 8    = 12    4
 12  / 8    = 1     4
 1   / 8    = 0     1

 十进制        -->     十六进制
 100          --> 64
 100 / 16   =  6    4
 6   / 16   =  0    6

------

## 十进制小数转换为二进制小数

- 整数部分,直接转换为二进制即可
- 小数部分,使用"乘2取整,顺序排列"
  - 用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,直到积中的小数部分为零,或者达到所要求的精度为止
  - 然后把取出的整数部分按顺序排列起来, 即是小数部分二进制
- 最后将整数部分的二进制和小数部分的二进制合并起来, 即是一个二进制小数
- 例如: 将12.125转换为二进制

```c
// 整数部分(除2取余)
  12
/  2
------
   6    // 余0
/  2
------
   3    // 余0
/  2
------
   1   // 余1
/  2
------
  0   // 余1
//12 --> 1100

// 小数部分(乘2取整数积)
  0.125
*     2
  ------
   0.25  //0
   0.25
*     2
  ------
    0.5  //0
    0.5
*     2
  ------
    1.0  //1
    0.0
// 0.125 --> 0.001

// 12.8125 --> 1100.001

二进制小数转换为十进制小数

  • 整数部分按照二进制转十进制即可
  • 小数部分从最高位开始乘以2的负n次方, n从1开始
  • 例如: 将 1100.001转换为十进制
// 整数部分(乘以2的n次方, n从0开始)
0 * 2^0 = 0
0 * 2^1 = 0
1 * 2^2 = 4
1 * 2^3 = 8
 // 1100 == 8 + 4 + 0 + 0 == 12

// 小数部分(乘以2的负n次方, n从0开始)
0 * (1/2) = 0
0 * (1/4) = 0
1 * (1/8) = 0.125
// .100 == 0 + 0 + 0.125 == 0.125

// 1100.001  --> 12.125
  • 练习:
    • 将0.8125转换为二进制
    • 将0.1101转换为十进制
  0.8125
*      2
--------
   1.625  // 1
   0.625
*      2
--------
    1.25 // 1
    0.25
*      2
--------
     0.5 // 0
*      2
--------
    1.0 // 1
    0.0

// 0. 8125  --> 0.1101
1*(1/2) = 0.5
1*(1/4)=0.25
0*(1/8)=0
1*(1/16)=0.0625

//0.1101 --> 0.5 + 0.25 + 0 + 0.0625 == 0.8125

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文