返回介绍

solution / 0900-0999 / 0931.Minimum Falling Path Sum / README

发布于 2024-06-17 01:03:33 字数 4552 浏览 0 评论 0 收藏 0

931. 下降路径最小和

English Version

题目描述

给你一个 n x n 方形 整数数组 matrix ,请你找出并返回通过 matrix下降路径_ _的 最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1)

 

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

 

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

解法

方法一:动态规划

我们定义 $f[i][j]$ 表示从第一行开始下降,到达第 $i$ 行第 $j$ 列的最小路径和。那么我们可以得到这样的动态规划转移方程:

$$ f[i][j] = matrix[i][j] + \min \left{ \begin{aligned} & f[i - 1][j - 1], & j > 0 \ & f[i - 1][j], & 0 \leq j < n \ & f[i - 1][j + 1], & j + 1 < n \end{aligned} \right. $$

最终的答案即为 $\min \limits_{0 \leq j < n} f[n - 1][j]$。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。

我们注意到,状态 $f[i][j]$ 只与上一行的状态有关,因此我们可以使用滚动数组的方式,去掉第一维的状态,将空间复杂度优化到 $O(n)$。

class Solution:
  def minFallingPathSum(self, matrix: List[List[int]]) -> int:
    n = len(matrix)
    f = [0] * n
    for row in matrix:
      g = [0] * n
      for j, x in enumerate(row):
        l, r = max(0, j - 1), min(n, j + 2)
        g[j] = min(f[l:r]) + x
      f = g
    return min(f)
class Solution {
  public int minFallingPathSum(int[][] matrix) {
    int n = matrix.length;
    var f = new int[n];
    for (var row : matrix) {
      var g = f.clone();
      for (int j = 0; j < n; ++j) {
        if (j > 0) {
          g[j] = Math.min(g[j], f[j - 1]);
        }
        if (j + 1 < n) {
          g[j] = Math.min(g[j], f[j + 1]);
        }
        g[j] += row[j];
      }
      f = g;
    }
    // return Arrays.stream(f).min().getAsInt();
    int ans = 1 << 30;
    for (int x : f) {
      ans = Math.min(ans, x);
    }
    return ans;
  }
}
class Solution {
public:
  int minFallingPathSum(vector<vector<int>>& matrix) {
    int n = matrix.size();
    vector<int> f(n);
    for (auto& row : matrix) {
      auto g = f;
      for (int j = 0; j < n; ++j) {
        if (j) {
          g[j] = min(g[j], f[j - 1]);
        }
        if (j + 1 < n) {
          g[j] = min(g[j], f[j + 1]);
        }
        g[j] += row[j];
      }
      f = move(g);
    }
    return *min_element(f.begin(), f.end());
  }
};
func minFallingPathSum(matrix [][]int) int {
  n := len(matrix)
  f := make([]int, n)
  for _, row := range matrix {
    g := make([]int, n)
    copy(g, f)
    for j, x := range row {
      if j > 0 {
        g[j] = min(g[j], f[j-1])
      }
      if j+1 < n {
        g[j] = min(g[j], f[j+1])
      }
      g[j] += x
    }
    f = g
  }
  return slices.Min(f)
}
function minFallingPathSum(matrix: number[][]): number {
  const n = matrix.length;
  const f: number[] = new Array(n).fill(0);
  for (const row of matrix) {
    const g = f.slice();
    for (let j = 0; j < n; ++j) {
      if (j > 0) {
        g[j] = Math.min(g[j], f[j - 1]);
      }
      if (j + 1 < n) {
        g[j] = Math.min(g[j], f[j + 1]);
      }
      g[j] += row[j];
    }
    f.splice(0, n, ...g);
  }
  return Math.min(...f);
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文