返回介绍

solution / 2000-2099 / 2003.Smallest Missing Genetic Value in Each Subtree / README_EN

发布于 2024-06-17 01:03:12 字数 11226 浏览 0 评论 0 收藏 0

2003. Smallest Missing Genetic Value in Each Subtree

中文文档

Description

There is a family tree rooted at 0 consisting of n nodes numbered 0 to n - 1. You are given a 0-indexed integer array parents, where parents[i] is the parent for node i. Since node 0 is the root, parents[0] == -1.

There are 105 genetic values, each represented by an integer in the inclusive range [1, 105]. You are given a 0-indexed integer array nums, where nums[i] is a distinct genetic value for node i.

Return _an array _ans_ of length _n_ where _ans[i]_ is_ _the smallest genetic value that is missing from the subtree rooted at node_ i.

The subtree rooted at a node x contains node x and all of its descendant nodes.

 

Example 1:

Input: parents = [-1,0,0,2], nums = [1,2,3,4]
Output: [5,1,1,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value.
- 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value.
- 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value.
- 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.

Example 2:

Input: parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]
Output: [7,1,1,4,2,1]
Explanation: The answer for each subtree is calculated as follows:
- 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value.
- 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value.
- 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value.
- 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value.
- 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value.
- 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.

Example 3:

Input: parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]
Output: [1,1,1,1,1,1,1]
Explanation: The value 1 is missing from all the subtrees.

 

Constraints:

  • n == parents.length == nums.length
  • 2 <= n <= 105
  • 0 <= parents[i] <= n - 1 for i != 0
  • parents[0] == -1
  • parents represents a valid tree.
  • 1 <= nums[i] <= 105
  • Each nums[i] is distinct.

Solutions

Solution 1: DFS

We notice that each node has a unique gene value, so we only need to find the node $idx$ with gene value $1$, and all nodes except for those on the path from node $idx$ to the root node $0$ have an answer of $1$.

Therefore, we initialize the answer array $ans$ to $[1,1,…,1]$, and our focus is on finding the answer for each node on the path from node $idx$ to the root node $0$.

We can start from node $idx$ and use depth-first search to mark the gene values that appear in the subtree rooted at $idx$, and record them in the array $has$. During the search process, we use an array $vis$ to mark the visited nodes to prevent repeated visits.

Next, we start from $i=2$ and keep looking for the first gene value that has not appeared, which is the answer for node $idx$. Here, $i$ is strictly increasing, because the gene values are unique, so we can always find a gene value that has not appeared in $[1,..n+1]$.

Then, we update the answer for node $idx$, i.e., $ans[idx]=i$, and update $idx$ to its parent node to continue the above process until $idx=-1$, which means we have reached the root node $0$.

Finally, we return the answer array $ans$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes.

class Solution:
  def smallestMissingValueSubtree(
    self, parents: List[int], nums: List[int]
  ) -> List[int]:
    def dfs(i: int):
      if vis[i]:
        return
      vis[i] = True
      if nums[i] < len(has):
        has[nums[i]] = True
      for j in g[i]:
        dfs(j)

    n = len(nums)
    ans = [1] * n
    g = [[] for _ in range(n)]
    idx = -1
    for i, p in enumerate(parents):
      if i:
        g[p].append(i)
      if nums[i] == 1:
        idx = i
    if idx == -1:
      return ans
    vis = [False] * n
    has = [False] * (n + 2)
    i = 2
    while idx != -1:
      dfs(idx)
      while has[i]:
        i += 1
      ans[idx] = i
      idx = parents[idx]
    return ans
class Solution {
  private List<Integer>[] g;
  private boolean[] vis;
  private boolean[] has;
  private int[] nums;

  public int[] smallestMissingValueSubtree(int[] parents, int[] nums) {
    int n = nums.length;
    this.nums = nums;
    g = new List[n];
    vis = new boolean[n];
    has = new boolean[n + 2];
    Arrays.setAll(g, i -> new ArrayList<>());
    int idx = -1;
    for (int i = 0; i < n; ++i) {
      if (i > 0) {
        g[parents[i]].add(i);
      }
      if (nums[i] == 1) {
        idx = i;
      }
    }
    int[] ans = new int[n];
    Arrays.fill(ans, 1);
    if (idx == -1) {
      return ans;
    }
    for (int i = 2; idx != -1; idx = parents[idx]) {
      dfs(idx);
      while (has[i]) {
        ++i;
      }
      ans[idx] = i;
    }
    return ans;
  }

  private void dfs(int i) {
    if (vis[i]) {
      return;
    }
    vis[i] = true;
    if (nums[i] < has.length) {
      has[nums[i]] = true;
    }
    for (int j : g[i]) {
      dfs(j);
    }
  }
}
class Solution {
public:
  vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) {
    int n = nums.size();
    vector<int> g[n];
    bool vis[n];
    bool has[n + 2];
    memset(vis, false, sizeof(vis));
    memset(has, false, sizeof(has));
    int idx = -1;
    for (int i = 0; i < n; ++i) {
      if (i) {
        g[parents[i]].push_back(i);
      }
      if (nums[i] == 1) {
        idx = i;
      }
    }
    vector<int> ans(n, 1);
    if (idx == -1) {
      return ans;
    }
    function<void(int)> dfs = [&](int i) {
      if (vis[i]) {
        return;
      }
      vis[i] = true;
      if (nums[i] < n + 2) {
        has[nums[i]] = true;
      }
      for (int j : g[i]) {
        dfs(j);
      }
    };
    for (int i = 2; ~idx; idx = parents[idx]) {
      dfs(idx);
      while (has[i]) {
        ++i;
      }
      ans[idx] = i;
    }
    return ans;
  }
};
func smallestMissingValueSubtree(parents []int, nums []int) []int {
  n := len(nums)
  g := make([][]int, n)
  vis := make([]bool, n)
  has := make([]bool, n+2)
  idx := -1
  ans := make([]int, n)
  for i, p := range parents {
    if i > 0 {
      g[p] = append(g[p], i)
    }
    if nums[i] == 1 {
      idx = i
    }
    ans[i] = 1
  }
  if idx < 0 {
    return ans
  }
  var dfs func(int)
  dfs = func(i int) {
    if vis[i] {
      return
    }
    vis[i] = true
    if nums[i] < len(has) {
      has[nums[i]] = true
    }
    for _, j := range g[i] {
      dfs(j)
    }
  }
  for i := 2; idx != -1; idx = parents[idx] {
    dfs(idx)
    for has[i] {
      i++
    }
    ans[idx] = i
  }
  return ans
}
function smallestMissingValueSubtree(parents: number[], nums: number[]): number[] {
  const n = nums.length;
  const g: number[][] = Array.from({ length: n }, () => []);
  const vis: boolean[] = Array(n).fill(false);
  const has: boolean[] = Array(n + 2).fill(false);
  const ans: number[] = Array(n).fill(1);
  let idx = -1;
  for (let i = 0; i < n; ++i) {
    if (i) {
      g[parents[i]].push(i);
    }
    if (nums[i] === 1) {
      idx = i;
    }
  }
  if (idx === -1) {
    return ans;
  }
  const dfs = (i: number): void => {
    if (vis[i]) {
      return;
    }
    vis[i] = true;
    if (nums[i] < has.length) {
      has[nums[i]] = true;
    }
    for (const j of g[i]) {
      dfs(j);
    }
  };
  for (let i = 2; ~idx; idx = parents[idx]) {
    dfs(idx);
    while (has[i]) {
      ++i;
    }
    ans[idx] = i;
  }
  return ans;
}
impl Solution {
  pub fn smallest_missing_value_subtree(parents: Vec<i32>, nums: Vec<i32>) -> Vec<i32> {
    fn dfs(
      i: usize,
      vis: &mut Vec<bool>,
      has: &mut Vec<bool>,
      g: &Vec<Vec<usize>>,
      nums: &Vec<i32>
    ) {
      if vis[i] {
        return;
      }
      vis[i] = true;
      if nums[i] < (has.len() as i32) {
        has[nums[i] as usize] = true;
      }
      for &j in &g[i] {
        dfs(j, vis, has, g, nums);
      }
    }

    let n = nums.len();
    let mut ans = vec![1; n];
    let mut g: Vec<Vec<usize>> = vec![vec![]; n];
    let mut idx = -1;
    for (i, &p) in parents.iter().enumerate() {
      if i > 0 {
        g[p as usize].push(i);
      }
      if nums[i] == 1 {
        idx = i as i32;
      }
    }
    if idx == -1 {
      return ans;
    }
    let mut vis = vec![false; n];
    let mut has = vec![false; (n + 2) as usize];
    let mut i = 2;
    let mut idx_mut = idx;
    while idx_mut != -1 {
      dfs(idx_mut as usize, &mut vis, &mut has, &g, &nums);
      while has[i] {
        i += 1;
      }
      ans[idx_mut as usize] = i as i32;
      idx_mut = parents[idx_mut as usize];
    }
    ans
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文