- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
parl.algorithms.paddle.td3
parl.algorithms.paddle.td3 源代码
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import parl import paddle import paddle.nn.functional as F from parl.utils.utils import check_model_method from copy import deepcopy __all__ = ['TD3'] [文档]class TD3(parl.Algorithm): [文档] def __init__(self, model, gamma=None, tau=None, actor_lr=None, critic_lr=None, policy_noise=0.2, noise_clip=0.5, policy_freq=2): """ TD3 algorithm Args: model(parl.Model): forward network of actor and critic. gamma(float): discounted factor for reward computation tau (float): decay coefficient when updating the weights of self.target_model with self.model actor_lr (float): learning rate of the actor model critic_lr (float): learning rate of the critic model policy_noise(float): noise added to target policy during critic update noise_clip(float): range to clip target policy noise policy_freq(int): frequency of delayed policy updates """ # checks check_model_method(model, 'value', self.__class__.__name__) check_model_method(model, 'policy', self.__class__.__name__) check_model_method(model, 'Q1', self.__class__.__name__) check_model_method(model, 'get_actor_params', self.__class__.__name__) check_model_method(model, 'get_critic_params', self.__class__.__name__) assert isinstance(gamma, float) assert isinstance(tau, float) assert isinstance(actor_lr, float) assert isinstance(critic_lr, float) self.gamma = gamma self.tau = tau self.actor_lr = actor_lr self.critic_lr = critic_lr self.policy_noise = policy_noise self.noise_clip = noise_clip self.policy_freq = policy_freq self.total_it = 0 self.model = model self.target_model = deepcopy(self.model) self.actor_optimizer = paddle.optimizer.Adam( learning_rate=actor_lr, parameters=self.model.get_actor_params()) self.critic_optimizer = paddle.optimizer.Adam( learning_rate=critic_lr, parameters=self.model.get_critic_params()) [文档] def predict(self, obs): action = self.model.policy(obs) return action [文档] def learn(self, obs, action, reward, next_obs, terminal): self.total_it += 1 critic_loss = self._critic_learn(obs, action, reward, next_obs, terminal) if self.total_it % self.policy_freq == 0: actor_loss = self._actor_learn(obs) return critic_loss def _critic_learn(self, obs, action, reward, next_obs, terminal): with paddle.no_grad(): noise = paddle.randn(action.shape) * self.policy_noise noise = paddle.clip(noise, -self.noise_clip, self.noise_clip) next_action = self.target_model.policy(next_obs) + noise next_action = paddle.clip(next_action, -1., 1.) target_q1, target_q2 = self.target_model.value( next_obs, next_action) target_q = paddle.minimum(target_q1, target_q2) terminal = paddle.cast(terminal, dtype='float32') target_q = reward + (1. - terminal) * self.gamma * target_q current_q1, current_q2 = self.model.value(obs, action) critic_loss = F.mse_loss(current_q1, target_q) + F.mse_loss( current_q2, target_q) self.critic_optimizer.clear_grad() critic_loss.backward() self.critic_optimizer.step() return critic_loss def _actor_learn(self, obs): actor_loss = -self.model.Q1(obs, self.model.policy(obs)).mean() self.actor_optimizer.clear_grad() actor_loss.backward() self.actor_optimizer.step() self.sync_target() return actor_loss def sync_target(self, decay=None): if decay is None: decay = 1. - self.tau self.model.sync_weights_to(self.target_model, decay=decay)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论