返回介绍

solution / 1700-1799 / 1765.Map of Highest Peak / README_EN

发布于 2024-06-17 01:03:14 字数 12356 浏览 0 评论 0 收藏 0

1765. Map of Highest Peak

中文文档

Description

You are given an integer matrix isWater of size m x n that represents a map of land and water cells.

  • If isWater[i][j] == 0, cell (i, j) is a land cell.
  • If isWater[i][j] == 1, cell (i, j) is a water cell.

You must assign each cell a height in a way that follows these rules:

  • The height of each cell must be non-negative.
  • If the cell is a water cell, its height must be 0.
  • Any two adjacent cells must have an absolute height difference of at most 1. A cell is adjacent to another cell if the former is directly north, east, south, or west of the latter (i.e., their sides are touching).

Find an assignment of heights such that the maximum height in the matrix is maximized.

Return _an integer matrix _height_ of size _m x n_ where _height[i][j]_ is cell _(i, j)_'s height. If there are multiple solutions, return any of them_.

 

Example 1:

Input: isWater = [[0,1],[0,0]]
Output: [[1,0],[2,1]]
Explanation: The image shows the assigned heights of each cell.
The blue cell is the water cell, and the green cells are the land cells.

Example 2:

Input: isWater = [[0,0,1],[1,0,0],[0,0,0]]
Output: [[1,1,0],[0,1,1],[1,2,2]]
Explanation: A height of 2 is the maximum possible height of any assignment.
Any height assignment that has a maximum height of 2 while still meeting the rules will also be accepted.

 

Constraints:

  • m == isWater.length
  • n == isWater[i].length
  • 1 <= m, n <= 1000
  • isWater[i][j] is 0 or 1.
  • There is at least one water cell.

Solutions

Solution 1

class Solution:
  def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:
    m, n = len(isWater), len(isWater[0])
    ans = [[-1] * n for _ in range(m)]
    q = deque()
    for i, row in enumerate(isWater):
      for j, v in enumerate(row):
        if v:
          q.append((i, j))
          ans[i][j] = 0
    while q:
      i, j = q.popleft()
      for a, b in pairwise((-1, 0, 1, 0, -1)):
        x, y = i + a, j + b
        if 0 <= x < m and 0 <= y < n and ans[x][y] == -1:
          ans[x][y] = ans[i][j] + 1
          q.append((x, y))
    return ans
class Solution {
  public int[][] highestPeak(int[][] isWater) {
    int m = isWater.length, n = isWater[0].length;
    int[][] ans = new int[m][n];
    Deque<int[]> q = new ArrayDeque<>();
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans[i][j] = isWater[i][j] - 1;
        if (ans[i][j] == 0) {
          q.offer(new int[] {i, j});
        }
      }
    }
    int[] dirs = {-1, 0, 1, 0, -1};
    while (!q.isEmpty()) {
      var p = q.poll();
      int i = p[0], j = p[1];
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
          ans[x][y] = ans[i][j] + 1;
          q.offer(new int[] {x, y});
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  const int dirs[5] = {-1, 0, 1, 0, -1};

  vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
    int m = isWater.size(), n = isWater[0].size();
    vector<vector<int>> ans(m, vector<int>(n));
    queue<pair<int, int>> q;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans[i][j] = isWater[i][j] - 1;
        if (ans[i][j] == 0) {
          q.emplace(i, j);
        }
      }
    }
    while (!q.empty()) {
      auto [i, j] = q.front();
      q.pop();
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
          ans[x][y] = ans[i][j] + 1;
          q.emplace(x, y);
        }
      }
    }
    return ans;
  }
};
func highestPeak(isWater [][]int) [][]int {
  m, n := len(isWater), len(isWater[0])
  ans := make([][]int, m)
  type pair struct{ i, j int }
  q := []pair{}
  for i, row := range isWater {
    ans[i] = make([]int, n)
    for j, v := range row {
      ans[i][j] = v - 1
      if v == 1 {
        q = append(q, pair{i, j})
      }
    }
  }
  dirs := []int{-1, 0, 1, 0, -1}
  for len(q) > 0 {
    p := q[0]
    q = q[1:]
    i, j := p.i, p.j
    for k := 0; k < 4; k++ {
      x, y := i+dirs[k], j+dirs[k+1]
      if x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1 {
        ans[x][y] = ans[i][j] + 1
        q = append(q, pair{x, y})
      }
    }
  }
  return ans
}
function highestPeak(isWater: number[][]): number[][] {
  const m = isWater.length;
  const n = isWater[0].length;
  let ans: number[][] = [];
  let q: number[][] = [];
  for (let i = 0; i < m; ++i) {
    ans.push(new Array(n).fill(-1));
    for (let j = 0; j < n; ++j) {
      if (isWater[i][j]) {
        q.push([i, j]);
        ans[i][j] = 0;
      }
    }
  }
  const dirs = [-1, 0, 1, 0, -1];
  while (q.length) {
    let tq: number[][] = [];
    for (const [i, j] of q) {
      for (let k = 0; k < 4; k++) {
        const [x, y] = [i + dirs[k], j + dirs[k + 1]];
        if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
          tq.push([x, y]);
          ans[x][y] = ans[i][j] + 1;
        }
      }
    }
    q = tq;
  }
  return ans;
}
use std::collections::VecDeque;

impl Solution {
  #[allow(dead_code)]
  pub fn highest_peak(is_water: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
    let n = is_water.len();
    let m = is_water[0].len();
    let mut ret_vec = vec![vec![-1; m]; n];
    let mut q: VecDeque<(usize, usize)> = VecDeque::new();
    let vis_pair: Vec<(i32, i32)> = vec![(-1, 0), (1, 0), (0, -1), (0, 1)];

    // Initialize the return vector
    for i in 0..n {
      for j in 0..m {
        if is_water[i][j] == 1 {
          // This cell is water, the height of which must be 0
          ret_vec[i][j] = 0;
          q.push_back((i, j));
        }
      }
    }

    while !q.is_empty() {
      // Get the front X-Y Coordinates
      let (x, y) = q.front().unwrap().clone();
      q.pop_front();
      // Traverse through the vis pair
      for d in &vis_pair {
        let (dx, dy) = *d;
        if Self::check_bounds((x as i32) + dx, (y as i32) + dy, n as i32, m as i32) {
          if ret_vec[((x as i32) + dx) as usize][((y as i32) + dy) as usize] == -1 {
            // This cell hasn't been visited, update its height
            ret_vec[((x as i32) + dx) as usize][((y as i32) + dy) as usize] =
              ret_vec[x][y] + 1;
            // Enqueue the current cell
            q.push_back((((x as i32) + dx) as usize, ((y as i32) + dy) as usize));
          }
        }
      }
    }

    ret_vec
  }

  #[allow(dead_code)]
  fn check_bounds(i: i32, j: i32, n: i32, m: i32) -> bool {
    i >= 0 && i < n && j >= 0 && j < m
  }
}

Solution 2

class Solution:
  def highestPeak(self, isWater: List[List[int]]) -> List[List[int]]:
    m, n = len(isWater), len(isWater[0])
    ans = [[-1] * n for _ in range(m)]
    q = deque()
    for i, row in enumerate(isWater):
      for j, v in enumerate(row):
        if v:
          q.append((i, j))
          ans[i][j] = 0
    while q:
      for _ in range(len(q)):
        i, j = q.popleft()
        for a, b in pairwise((-1, 0, 1, 0, -1)):
          x, y = i + a, j + b
          if 0 <= x < m and 0 <= y < n and ans[x][y] == -1:
            ans[x][y] = ans[i][j] + 1
            q.append((x, y))
    return ans
class Solution {
  public int[][] highestPeak(int[][] isWater) {
    int m = isWater.length, n = isWater[0].length;
    int[][] ans = new int[m][n];
    Deque<int[]> q = new ArrayDeque<>();
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans[i][j] = isWater[i][j] - 1;
        if (ans[i][j] == 0) {
          q.offer(new int[] {i, j});
        }
      }
    }
    int[] dirs = {-1, 0, 1, 0, -1};
    while (!q.isEmpty()) {
      for (int t = q.size(); t > 0; --t) {
        var p = q.poll();
        int i = p[0], j = p[1];
        for (int k = 0; k < 4; ++k) {
          int x = i + dirs[k], y = j + dirs[k + 1];
          if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
            ans[x][y] = ans[i][j] + 1;
            q.offer(new int[] {x, y});
          }
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  const int dirs[5] = {-1, 0, 1, 0, -1};

  vector<vector<int>> highestPeak(vector<vector<int>>& isWater) {
    int m = isWater.size(), n = isWater[0].size();
    vector<vector<int>> ans(m, vector<int>(n));
    queue<pair<int, int>> q;
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        ans[i][j] = isWater[i][j] - 1;
        if (ans[i][j] == 0) {
          q.emplace(i, j);
        }
      }
    }
    while (!q.empty()) {
      for (int t = q.size(); t; --t) {
        auto [i, j] = q.front();
        q.pop();
        for (int k = 0; k < 4; ++k) {
          int x = i + dirs[k], y = j + dirs[k + 1];
          if (x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1) {
            ans[x][y] = ans[i][j] + 1;
            q.emplace(x, y);
          }
        }
      }
    }
    return ans;
  }
};
func highestPeak(isWater [][]int) [][]int {
  m, n := len(isWater), len(isWater[0])
  ans := make([][]int, m)
  type pair struct{ i, j int }
  q := []pair{}
  for i, row := range isWater {
    ans[i] = make([]int, n)
    for j, v := range row {
      ans[i][j] = v - 1
      if v == 1 {
        q = append(q, pair{i, j})
      }
    }
  }
  dirs := []int{-1, 0, 1, 0, -1}
  for len(q) > 0 {
    for t := len(q); t > 0; t-- {
      p := q[0]
      q = q[1:]
      i, j := p.i, p.j
      for k := 0; k < 4; k++ {
        x, y := i+dirs[k], j+dirs[k+1]
        if x >= 0 && x < m && y >= 0 && y < n && ans[x][y] == -1 {
          ans[x][y] = ans[i][j] + 1
          q = append(q, pair{x, y})
        }
      }
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文