返回介绍

solution / 0000-0099 / 0034.Find First and Last Position of Element in Sorted Array / README_EN

发布于 2024-06-17 01:04:40 字数 6971 浏览 0 评论 0 收藏 0

34. Find First and Last Position of Element in Sorted Array

中文文档

Description

Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a given target value.

If target is not found in the array, return [-1, -1].

You must write an algorithm with O(log n) runtime complexity.

 

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]

Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]

Example 3:

Input: nums = [], target = 0
Output: [-1,-1]

 

Constraints:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums is a non-decreasing array.
  • -109 <= target <= 109

Solutions

Solution 1: Binary Search

We can perform binary search twice to find the left and right boundaries respectively.

The time complexity is $O(\log n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array $nums$.

Below are two general templates for binary search:

Template 1:

boolean check(int x) {
}

int search(int left, int right) {
  while (left < right) {
    int mid = (left + right) >> 1;
    if (check(mid)) {
      right = mid;
    } else {
      left = mid + 1;
    }
  }
  return left;
}

Template 2:

boolean check(int x) {
}

int search(int left, int right) {
  while (left < right) {
    int mid = (left + right + 1) >> 1;
    if (check(mid)) {
      left = mid;
    } else {
      right = mid - 1;
    }
  }
  return left;
}

When doing binary search problems, you can follow the following routine:

  1. Write out the loop condition $left < right$;
  2. Inside the loop, you might as well write $mid = \lfloor \frac{left + right}{2} \rfloor$ first;
  3. According to the specific problem, implement the $check()$ function (sometimes the logic is very simple, you can not define $check$), think about whether to use $right = mid$ (Template $1$) or $left = mid$ (Template $2$);
    • If $right = mid$, then write the else statement $left = mid + 1$, and there is no need to change the calculation of $mid$, that is, keep $mid = \lfloor \frac{left + right}{2} \rfloor$;
    • If $left = mid$, then write the else statement $right = mid - 1$, and add +1 when calculating $mid$, that is, $mid = \lfloor \frac{left + right + 1}{2} \rfloor$;
  4. When the loop ends, $left$ equals $right$.

Note that the advantage of these two templates is that they always keep the answer within the binary search interval, and the value corresponding to the end condition of the binary search is exactly at the position of the answer. For the case that may have no solution, just check whether the $left$ or $right$ after the binary search ends satisfies the problem.

class Solution:
  def searchRange(self, nums: List[int], target: int) -> List[int]:
    l = bisect_left(nums, target)
    r = bisect_left(nums, target + 1)
    return [-1, -1] if l == r else [l, r - 1]
class Solution {
  public int[] searchRange(int[] nums, int target) {
    int l = search(nums, target);
    int r = search(nums, target + 1);
    return l == r ? new int[] {-1, -1} : new int[] {l, r - 1};
  }

  private int search(int[] nums, int x) {
    int left = 0, right = nums.length;
    while (left < right) {
      int mid = (left + right) >>> 1;
      if (nums[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
}
class Solution {
public:
  vector<int> searchRange(vector<int>& nums, int target) {
    int l = lower_bound(nums.begin(), nums.end(), target) - nums.begin();
    int r = lower_bound(nums.begin(), nums.end(), target + 1) - nums.begin();
    if (l == r) return {-1, -1};
    return {l, r - 1};
  }
};
func searchRange(nums []int, target int) []int {
  l := sort.SearchInts(nums, target)
  r := sort.SearchInts(nums, target+1)
  if l == r {
    return []int{-1, -1}
  }
  return []int{l, r - 1}
}
function searchRange(nums: number[], target: number): number[] {
  const search = (x: number): number => {
    let [left, right] = [0, nums.length];
    while (left < right) {
      const mid = (left + right) >> 1;
      if (nums[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  };
  const l = search(target);
  const r = search(target + 1);
  return l === r ? [-1, -1] : [l, r - 1];
}
impl Solution {
  pub fn search_range(nums: Vec<i32>, target: i32) -> Vec<i32> {
    let n = nums.len();
    let search = |x| {
      let mut left = 0;
      let mut right = n;
      while left < right {
        let mid = left + (right - left) / 2;
        if nums[mid] < x {
          left = mid + 1;
        } else {
          right = mid;
        }
      }
      left
    };
    let l = search(target);
    let r = search(target + 1);
    if l == r {
      return vec![-1, -1];
    }
    vec![l as i32, (r - 1) as i32]
  }
}
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number[]}
 */
var searchRange = function (nums, target) {
  function search(x) {
    let left = 0,
      right = nums.length;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (nums[mid] >= x) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    return left;
  }
  const l = search(target);
  const r = search(target + 1);
  return l == r ? [-1, -1] : [l, r - 1];
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文