返回介绍

solution / 1500-1599 / 1514.Path with Maximum Probability / README_EN

发布于 2024-06-17 01:03:18 字数 9312 浏览 0 评论 0 收藏 0

1514. Path with Maximum Probability

中文文档

Description

You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.

 

Example 1:

Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
Output: 0.25000
Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.

Example 2:

Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
Output: 0.30000

Example 3:

Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
Output: 0.00000
Explanation: There is no path between 0 and 2.

 

Constraints:

  • 2 <= n <= 10^4
  • 0 <= start, end < n
  • start != end
  • 0 <= a, b < n
  • a != b
  • 0 <= succProb.length == edges.length <= 2*10^4
  • 0 <= succProb[i] <= 1
  • There is at most one edge between every two nodes.

Solutions

Solution 1

class Solution:
  def maxProbability(
    self,
    n: int,
    edges: List[List[int]],
    succProb: List[float],
    start: int,
    end: int,
  ) -> float:
    g = defaultdict(list)
    for (a, b), s in zip(edges, succProb):
      g[a].append((b, s))
      g[b].append((a, s))
    q = [(-1, start)]
    d = [0] * n
    d[start] = 1
    while q:
      w, u = heappop(q)
      w = -w
      if d[u] > w:
        continue
      for v, t in g[u]:
        if d[v] < d[u] * t:
          d[v] = d[u] * t
          heappush(q, (-d[v], v))
    return d[end]
class Solution {
  public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
    List<Pair<Integer, Double>>[] g = new List[n];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (int i = 0; i < edges.length; ++i) {
      int a = edges[i][0], b = edges[i][1];
      double s = succProb[i];
      g[a].add(new Pair<>(b, s));
      g[b].add(new Pair<>(a, s));
    }
    PriorityQueue<Pair<Double, Integer>> q
      = new PriorityQueue<>(Comparator.comparingDouble(Pair::getKey));
    double[] d = new double[n];
    d[start] = 1.0;
    q.offer(new Pair<>(-1.0, start));
    while (!q.isEmpty()) {
      Pair<Double, Integer> p = q.poll();
      double w = p.getKey();
      w *= -1;
      int u = p.getValue();
      for (Pair<Integer, Double> ne : g[u]) {
        int v = ne.getKey();
        double t = ne.getValue();
        if (d[v] < d[u] * t) {
          d[v] = d[u] * t;
          q.offer(new Pair<>(-d[v], v));
        }
      }
    }
    return d[end];
  }
}
class Solution {
public:
  double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
    vector<vector<pair<int, double>>> g(n);
    for (int i = 0; i < edges.size(); ++i) {
      int a = edges[i][0], b = edges[i][1];
      double s = succProb[i];
      g[a].push_back({b, s});
      g[b].push_back({a, s});
    }
    vector<double> d(n);
    d[start] = 1.0;
    queue<pair<double, int>> q;
    q.push({1.0, start});
    while (!q.empty()) {
      auto p = q.front();
      q.pop();
      double w = p.first;
      int u = p.second;
      if (d[u] > w) continue;
      for (auto& e : g[u]) {
        int v = e.first;
        double t = e.second;
        if (d[v] < d[u] * t) {
          d[v] = d[u] * t;
          q.push({d[v], v});
        }
      }
    }
    return d[end];
  }
};
func maxProbability(n int, edges [][]int, succProb []float64, start int, end int) float64 {
  g := make([][]pair, n)
  for i, e := range edges {
    a, b, s := e[0], e[1], succProb[i]
    g[a] = append(g[a], pair{b, s})
    g[b] = append(g[b], pair{a, s})
  }
  d := make([]float64, n)
  d[start] = 1
  vis := make([]bool, n)
  q := []int{start}
  vis[start] = true
  for len(q) > 0 {
    i := q[0]
    q = q[1:]
    vis[i] = false
    for _, ne := range g[i] {
      j, s := ne.idx, ne.s
      if d[j] < d[i]*s {
        d[j] = d[i] * s
        if !vis[j] {
          q = append(q, j)
          vis[j] = true
        }
      }
    }
  }
  return d[end]
}

type pair struct {
  idx int
  s   float64
}

Solution 2

class Solution:
  def maxProbability(
    self,
    n: int,
    edges: List[List[int]],
    succProb: List[float],
    start: int,
    end: int,
  ) -> float:
    g = defaultdict(list)
    for (a, b), s in zip(edges, succProb):
      g[a].append((b, s))
      g[b].append((a, s))
    d = [0] * n
    vis = [False] * n
    d[start] = 1
    q = deque([start])
    vis[start] = True
    while q:
      i = q.popleft()
      vis[i] = False
      for j, s in g[i]:
        if d[j] < d[i] * s:
          d[j] = d[i] * s
          if not vis[j]:
            q.append(j)
            vis[j] = True
    return d[end]
class Solution {
  public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
    List<Pair<Integer, Double>>[] g = new List[n];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (int i = 0; i < edges.length; ++i) {
      int a = edges[i][0], b = edges[i][1];
      double s = succProb[i];
      g[a].add(new Pair<>(b, s));
      g[b].add(new Pair<>(a, s));
    }
    double[] d = new double[n];
    d[start] = 1.0;
    boolean[] vis = new boolean[n];
    Deque<Integer> q = new ArrayDeque<>();
    q.offer(start);
    vis[start] = true;
    while (!q.isEmpty()) {
      int i = q.poll();
      vis[i] = false;
      for (Pair<Integer, Double> ne : g[i]) {
        int j = ne.getKey();
        double s = ne.getValue();
        if (d[j] < d[i] * s) {
          d[j] = d[i] * s;
          if (!vis[j]) {
            q.offer(j);
            vis[j] = true;
          }
        }
      }
    }
    return d[end];
  }
}
class Solution {
public:
  double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) {
    vector<vector<pair<int, double>>> g(n);
    for (int i = 0; i < edges.size(); ++i) {
      int a = edges[i][0], b = edges[i][1];
      double s = succProb[i];
      g[a].push_back({b, s});
      g[b].push_back({a, s});
    }
    vector<double> d(n);
    vector<bool> vis(n);
    d[start] = 1.0;
    queue<int> q{{start}};
    vis[start] = true;
    while (!q.empty()) {
      int i = q.front();
      q.pop();
      vis[i] = false;
      for (auto& ne : g[i]) {
        int j = ne.first;
        double s = ne.second;
        if (d[j] < d[i] * s) {
          d[j] = d[i] * s;
          if (!vis[j]) {
            q.push(j);
            vis[j] = true;
          }
        }
      }
    }
    return d[end];
  }
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文