返回介绍

solution / 0500-0599 / 0511.Game Play Analysis I / README

发布于 2024-06-17 01:04:00 字数 1989 浏览 0 评论 0 收藏 0

511. 游戏玩法分析 I

English Version

题目描述

活动表 Activity

+--------------+---------+
| Column Name  | Type  |
+--------------+---------+
| player_id  | int   |
| device_id  | int   |
| event_date   | date  |
| games_played | int   |
+--------------+---------+
在 SQL 中,表的主键是 (player_id, event_date)。
这张表展示了一些游戏玩家在游戏平台上的行为活动。
每行数据记录了一名玩家在退出平台之前,当天使用同一台设备登录平台后打开的游戏的数目(可能是 0 个)。

 

查询每位玩家 第一次登录平台的日期

查询结果的格式如下所示:

Activity 表:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1     | 2     | 2016-03-01 | 5      |
| 1     | 2     | 2016-05-02 | 6      |
| 2     | 3     | 2017-06-25 | 1      |
| 3     | 1     | 2016-03-02 | 0      |
| 3     | 4     | 2018-07-03 | 5      |
+-----------+-----------+------------+--------------+

Result 表:
+-----------+-------------+
| player_id | first_login |
+-----------+-------------+
| 1     | 2016-03-01  |
| 2     | 2017-06-25  |
| 3     | 2016-03-02  |
+-----------+-------------+

解法

方法一:分组求最小值

我们可以用 GROUP BYplayer_id 进行分组,然后取每一组中最小的 event_date 作为玩家第一次登录平台的日期。

import pandas as pd


def game_analysis(activity: pd.DataFrame) -> pd.DataFrame:
  return (
    activity.groupby("player_id")
    .agg(first_login=("event_date", "min"))
    .reset_index()
  )
# Write your MySQL query statement below
SELECT player_id, MIN(event_date) AS first_login
FROM Activity
GROUP BY 1;

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文