- Debugging/Logging - 飞行日志分析
- Debugging/Logging - ULog文件格式
- 教程
- 教程 - 地面站
- 教程 - 编写应用程序
- 教程 - QGC的视频流
- 教程 - 远距离视频流
- 教程 - u-blox M8P RTK
- 新手上路
- 新手上路 - 初始设置
- 新手上路 - 安装工具链
- 安装工具链 - Mac OS
- 安装工具链 - Linux
- Linux - Advanced Linux
- 安装工具链 - Windows
- 新手上路 - Fast RTPS installation
- 新手上路 - 代码编译
- 新手上路 - 高级配置
- 新手上路 - 贡献& 开发者电话会议
- 贡献& 开发者电话会议 - GIT例程
- 贡献& 开发者电话会议 - Documentation
- 新手上路 - Licenses
- 概念解读
- 概念解读 - 飞行模式
- 概念解读 - 结构概述
- 概念解读 - 飞行控制栈
- 概念解读 - 中间件
- 概念解读 - 混控和执行器
- 概念解读 - PWM限制状态机
- Hardware
- Hardware - 自驾仪硬件
- 机型 - 统一的基础代码
- 机型 - 参考机型
- 机型 - 添加一个新的机型
- Data Links - SiK Radio
- Data Links - Wifi数传
- Data Links - 数传
- I2C总线 - SF1XX lidar
- 传感器和执行机构总线 - UAVCAN总线
- UAVCAN总线 - UAVCAN Bootloader
- UAVCAN总线 - UAVCAN固件升级
- UAVCAN总线 - UAVCAN配置
- UAVCAN总线 - UAVCAN 的各种笔记
- 传感器和执行机构总线 - UART
- UART - uLanding Radar
- 传感器和执行机构总线 - 设置云台控制
- 传感器和执行机构总线 - 相机触发器
- Hardware - 协同电脑
- 仿真
- 仿真 - 基本仿真
- 仿真 - Gazebo仿真
- 仿真 - HITL仿真
- 仿真 - 连接到ROS
- 仿真 - AirSim仿真
- 仿真 - 多机仿真
- 中间件及架构
- 中间件及架构 - uORB消息机制
- 中间件及架构 - MAVLink消息机制
- 中间件及架构 - 守护程序
- 中间件及架构 - 驱动框架
- 模块 & 命令
- 模块 & 命令 - 命令
- 模块 & 命令 - 通信
- 模块 & 命令 - 驱动
- 模块 & 命令 - 系统
- Robotics
- Robotics - 用Linux进行外部控制
- Robotics - ROS
- ROS - 在RPi上安装ROS
- ROS - MAVROS (ROS上的MAVLink)
- ROS - MAVROS外部控制例程
- ROS - 外部位置估计
- ROS - Gazebo Octomap
- Robotics - DroneKit
- Debugging/Logging
- Debugging/Logging - FAQ
- Debugging/Logging - 系统控制台
- Debugging/Logging - 自驾仪调试
- Debugging/Logging - Sensor/Topic Debugging
- Debugging/Logging - 仿真调试
- Debugging/Logging - System-wide Replay
- Debugging/Logging - 发送调试的值
- Debugging/Logging - Profiling
- Debugging/Logging - 日志记录
- 教程 - 光流
- 教程 - ecl EKF
- 教程 - 飞行前检查
- 教程 - 着陆检测
- 教程 - Linux系统下使用S.Bus驱动
- Advanced Topics
- Advanced Topics - 系统启动
- Advanced Topics - 参数&配置
- Advanced Topics - 参考参数
- Advanced Topics - 安装Intel RealSense R200的驱动
- Advanced Topics - 切换状态估计器
- Advanced Topics - 外部模块
- Advanced Topics - STM32 Bootloader
- 测试和持续集成
- 测试和持续集成 - 持续集成
- 测试和持续集成 - Jenkins持续集成环境
- 测试和持续集成 - 综合测试
- 测试和持续集成 - Docker容器
- 测试和持续集成 - 维护
ROS - MAVROS外部控制例程
注意: 机外控制非常危险。如果在真机上操作,请确保可以在出错的时候切回手动控制。
下面的教程是一个基础的机外控制例子,通过MAVROS在Gazebo中应用于Iris四旋翼上。在教程最后,你应该会得到与下面视频相同的结果,即无人机缓慢起飞到高度2米。
代码
在ROS包中创建offb_node.cpp文件,并粘贴下面内容:
/**
* @file offb_node.cpp
* @brief offboard example node, written with mavros version 0.14.2, px4 flight
* stack and tested in Gazebo SITL
*/
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
mavros_msgs::State current_state;
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "offb_node");
ros::NodeHandle nh;
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>
("mavros/state", 10, state_cb);
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
("mavros/setpoint_position/local", 10);
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>
("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
("mavros/set_mode");
//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);
// wait for FCU connection
while(ros::ok() && current_state.connected){
ros::spinOnce();
rate.sleep();
}
geometry_msgs::PoseStamped pose;
pose.pose.position.x = 0;
pose.pose.position.y = 0;
pose.pose.position.z = 2;
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if( current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.mode_sent){
ROS_INFO("Offboard enabled");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
}
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
return 0;
}
提示: 本过程需要对ROS有一定的了解。
创建工作空间后需要source devel/setup.bash
,否则会出现找不到package的情况,要想保证工作空间已配置正确需确保ROS_PACKAGE_PATH环境变量包含你的工作空间目录,采用echo $ROS_PACKAGE_PATH
命令查看是否包含了你创建的package的路径,此操作也可以通过直接在.bashrc文件最后添加路径的方式解决。
代码解释
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
mavros_msgs
包含MAVROS包中提供的服务(service)和话题(topic)所需的一切自定义消息。所有服务和话题以及相应的消息类型可参照文档mavros wiki。
mavros_msgs::State current_state;
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
我们创建一个简单的回调函数来保存飞控的当前状态。我们可以用它检查连接状态,解锁状态以及外部控制标志。
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/state", 10, state_cb);
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>("mavros/setpoint_position/local", 10);
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode");
我们实例化一个用来发布被控制的本地位置的发布器,以及适当的客户端来请求解锁和模式更改。注意,对你自己的系统,”mavros”前缀部分会有所不同,它依赖于对应节点的launch文件中定义的名字。
//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);
px4飞行栈的两个机外(offboard)控制指令之间有500ms的时限。如果超过了时限,commander指令将会切换回进入机外控制模式前的上一个模式。这正是为什么发布频率必须高于2Hz的原因,并且还要考虑可能的延迟。这也是我们推荐从位置控制(POSCTL)模式进入机外控制模式的原因。这样一来,如果飞机意外脱离了机外控制模式,飞机将会停在当前轨道并悬停。
// wait for FCU connection
while(ros::ok() && current_state.connected){
ros::spinOnce();
rate.sleep();
}
在发布任何东西之前,我们需要等待MAVROS和飞控建立连接。一旦接收到心跳消息heartbeat message,该循环就会立即退出。以上代码是以一定频率(20Hz)来执行ROS消息回调函数,即ros::spinOnce().
geometry_msgs::PoseStamped pose;
pose.pose.position.x = 0;
pose.pose.position.y = 0;
pose.pose.position.z = 2;
即使px4飞行栈在航空NED坐标系中运行,MAVROS仍然会将这些坐标转换到标准的ENU坐标系,反之亦然。这是我们将Z设置为+2的原因。
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
在进入机外控制模式之前,就必须开始发送设定值(这里是指pose),否则模式切换会被拒绝。这里的100是一个随意选取的值。
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
设置自定义模式为OFFBOARD
。PX4飞行栈所支持的飞行模式可参考这里
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if( current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.mode_sent){
ROS_INFO("Offboard enabled");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
}
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
剩下的代码比较好理解。我们试图在解锁旋翼允许它起飞后,将它切换至机外控制模式。为了避免大量请求堵塞飞控,我们设置服务调用间隔时间为5秒。在同一个循环里,继续以合适的频率持续发布设定的pose。
提示: 为了便于说明,该代码已被简化。在较大的系统中,往往会创建一个新的线程用来周期性地发布设定值。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论