返回介绍

solution / 1900-1999 / 1922.Count Good Numbers / README_EN

发布于 2024-06-17 01:03:12 字数 3737 浏览 0 评论 0 收藏 0

1922. Count Good Numbers

中文文档

Description

A digit string is good if the digits (0-indexed) at even indices are even and the digits at odd indices are prime (2, 3, 5, or 7).

  • For example, "2582" is good because the digits (2 and 8) at even positions are even and the digits (5 and 2) at odd positions are prime. However, "3245" is not good because 3 is at an even index but is not even.

Given an integer n, return _the total number of good digit strings of length _n. Since the answer may be large, return it modulo 109 + 7.

A digit string is a string consisting of digits 0 through 9 that may contain leading zeros.

 

Example 1:

Input: n = 1
Output: 5
Explanation: The good numbers of length 1 are "0", "2", "4", "6", "8".

Example 2:

Input: n = 4
Output: 400

Example 3:

Input: n = 50
Output: 564908303

 

Constraints:

  • 1 <= n <= 1015

Solutions

Solution 1

class Solution:
  def countGoodNumbers(self, n: int) -> int:
    mod = 10**9 + 7

    def myPow(x, n):
      res = 1
      while n:
        if (n & 1) == 1:
          res = res * x % mod
        x = x * x % mod
        n >>= 1
      return res

    return myPow(5, (n + 1) >> 1) * myPow(4, n >> 1) % mod
class Solution {
  private int mod = 1000000007;

  public int countGoodNumbers(long n) {
    return (int) (myPow(5, (n + 1) >> 1) * myPow(4, n >> 1) % mod);
  }

  private long myPow(long x, long n) {
    long res = 1;
    while (n != 0) {
      if ((n & 1) == 1) {
        res = res * x % mod;
      }
      x = x * x % mod;
      n >>= 1;
    }
    return res;
  }
}
int MOD = 1000000007;

class Solution {
public:
  int countGoodNumbers(long long n) {
    return (int) (myPow(5, (n + 1) >> 1) * myPow(4, n >> 1) % MOD);
  }

private:
  long long myPow(long long x, long long n) {
    long long res = 1;
    while (n) {
      if ((n & 1) == 1) {
        res = res * x % MOD;
      }
      x = x * x % MOD;
      n >>= 1;
    }
    return res;
  }
};
const mod int64 = 1e9 + 7

func countGoodNumbers(n int64) int {
  return int(myPow(5, (n+1)>>1) * myPow(4, n>>1) % mod)
}

func myPow(x, n int64) int64 {
  var res int64 = 1
  for n != 0 {
    if (n & 1) == 1 {
      res = res * x % mod
    }
    x = x * x % mod
    n >>= 1
  }
  return res
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文