返回介绍

solution / 1300-1399 / 1351.Count Negative Numbers in a Sorted Matrix / README_EN

发布于 2024-06-17 01:03:20 字数 8147 浏览 0 评论 0 收藏 0

1351. Count Negative Numbers in a Sorted Matrix

中文文档

Description

Given a m x n matrix grid which is sorted in non-increasing order both row-wise and column-wise, return _the number of negative numbers in_ grid.

 

Example 1:

Input: grid = [[4,3,2,-1],[3,2,1,-1],[1,1,-1,-2],[-1,-1,-2,-3]]
Output: 8
Explanation: There are 8 negatives number in the matrix.

Example 2:

Input: grid = [[3,2],[1,0]]
Output: 0

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • -100 <= grid[i][j] <= 100

 

Follow up: Could you find an O(n + m) solution?

Solutions

Solution 1: Start Traversing from the Bottom Left or Top Right

According to the characteristic that both rows and columns are arranged in non-increasing order, we can start traversing from the bottom left corner towards the top right direction.

When encountering a negative number, it indicates that all elements to the right of the current position in this row are negative. We add the number of remaining elements in this row to the answer, that is, $n - j$, and move up a row, that is, $i \leftarrow i - 1$. Otherwise, move to the right column, that is, $j \leftarrow j + 1$.

After the traversal is over, return the answer.

The time complexity is $O(m + n)$, where $m$ and $n$ are the number of rows and columns of the matrix, respectively. The space complexity is $O(1)$.

class Solution:
  def countNegatives(self, grid: List[List[int]]) -> int:
    m, n = len(grid), len(grid[0])
    i, j = m - 1, 0
    ans = 0
    while i >= 0 and j < n:
      if grid[i][j] < 0:
        ans += n - j
        i -= 1
      else:
        j += 1
    return ans
class Solution {
  public int countNegatives(int[][] grid) {
    int m = grid.length, n = grid[0].length;
    int ans = 0;
    for (int i = m - 1, j = 0; i >= 0 && j < n;) {
      if (grid[i][j] < 0) {
        ans += n - j;
        --i;
      } else {
        ++j;
      }
    }
    return ans;
  }
}
class Solution {
public:
  int countNegatives(vector<vector<int>>& grid) {
    int m = grid.size(), n = grid[0].size();
    int ans = 0;
    for (int i = m - 1, j = 0; i >= 0 && j < n;) {
      if (grid[i][j] < 0) {
        ans += n - j;
        --i;
      } else
        ++j;
    }
    return ans;
  }
};
func countNegatives(grid [][]int) int {
  m, n := len(grid), len(grid[0])
  ans := 0
  for i, j := m-1, 0; i >= 0 && j < n; {
    if grid[i][j] < 0 {
      ans += n - j
      i--
    } else {
      j++
    }
  }
  return ans
}
function countNegatives(grid: number[][]): number {
  const m = grid.length,
    n = grid[0].length;
  let ans = 0;
  for (let i = m - 1, j = 0; i >= 0 && j < n; ) {
    if (grid[i][j] < 0) {
      ans += n - j;
      --i;
    } else {
      ++j;
    }
  }
  return ans;
}
impl Solution {
  pub fn count_negatives(grid: Vec<Vec<i32>>) -> i32 {
    let n = grid[0].len();
    grid.into_iter()
      .map(|nums| {
        let mut left = 0;
        let mut right = n;
        while left < right {
          let mid = left + (right - left) / 2;
          if nums[mid] >= 0 {
            left = mid + 1;
          } else {
            right = mid;
          }
        }
        (n - left) as i32
      })
      .sum()
  }
}
/**
 * @param {number[][]} grid
 * @return {number}
 */
var countNegatives = function (grid) {
  const m = grid.length,
    n = grid[0].length;
  let ans = 0;
  for (let i = m - 1, j = 0; i >= 0 && j < n; ) {
    if (grid[i][j] < 0) {
      ans += n - j;
      --i;
    } else {
      ++j;
    }
  }
  return ans;
};

Solution 2: Binary Search

Traverse each row, use binary search to find the first position less than $0$ in each row. All elements to the right of this position are negative, and add the number of negative numbers to the answer.

After the traversal is over, return the answer.

The time complexity is $O(m \times \log n)$, where $m$ and $n$ are the number of rows and columns of the matrix, respectively. The space complexity is $O(1)$.

class Solution:
  def countNegatives(self, grid: List[List[int]]) -> int:
    return sum(bisect_left(row[::-1], 0) for row in grid)
class Solution {
  public int countNegatives(int[][] grid) {
    int ans = 0;
    int n = grid[0].length;
    for (int[] row : grid) {
      int left = 0, right = n;
      while (left < right) {
        int mid = (left + right) >> 1;
        if (row[mid] < 0) {
          right = mid;
        } else {
          left = mid + 1;
        }
      }
      ans += n - left;
    }
    return ans;
  }
}
class Solution {
public:
  int countNegatives(vector<vector<int>>& grid) {
    int ans = 0;
    for (auto& row : grid) {
      ans += lower_bound(row.rbegin(), row.rend(), 0) - row.rbegin();
    }
    return ans;
  }
};
func countNegatives(grid [][]int) int {
  ans, n := 0, len(grid[0])
  for _, row := range grid {
    left, right := 0, n
    for left < right {
      mid := (left + right) >> 1
      if row[mid] < 0 {
        right = mid
      } else {
        left = mid + 1
      }
    }
    ans += n - left
  }
  return ans
}
function countNegatives(grid: number[][]): number {
  const n = grid[0].length;
  let ans = 0;
  for (let row of grid) {
    let left = 0,
      right = n;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (row[mid] < 0) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    ans += n - left;
  }
  return ans;
}
impl Solution {
  pub fn count_negatives(grid: Vec<Vec<i32>>) -> i32 {
    let m = grid.len();
    let n = grid[0].len();
    let mut i = m;
    let mut j = 0;
    let mut res = 0;
    while i > 0 && j < n {
      if grid[i - 1][j] >= 0 {
        j += 1;
      } else {
        res += n - j;
        i -= 1;
      }
    }
    res as i32
  }
}
/**
 * @param {number[][]} grid
 * @return {number}
 */
var countNegatives = function (grid) {
  const n = grid[0].length;
  let ans = 0;
  for (let row of grid) {
    let left = 0,
      right = n;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (row[mid] < 0) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    ans += n - left;
  }
  return ans;
};

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文