8.6 二叉排序树
大家可能都听过这个故事,说有两个年轻人正在深山中行走。忽然发现远处有一只老虎要冲过来,怎么办?其中一个赶忙弯腰系鞋带,另一个奇怪地问:“你系鞋带干什么?你不可能跑得比老虎还快。”系鞋带者说:“我有什么必要跑赢老虎呢?我只要跑得比你快就行了。”
这真是交友不慎呀!别急,如果你的朋友是系鞋带者,你怎么办?
后来老虎来了,系鞋带者拼命地跑,另一人则急中生智,爬到了树上。老虎在选择爬树还是追人之间,当然是会选择后者,于是结果……爬树者改变了跑的思想,这一改变何等重要,捡回了自己的一条命。
图8-6-1
好了,这个故事也告诉我们,所谓优势只不过是比别人多深入思考一点而已。
假设查找的数据集是普通的顺序存储,那么插入操作就是将记录放在表的末端,给表记录数加一即可,删除操作可以是删除后,后面的记录向前移,也可以是要删除的元素与最后一个元素互换,表记录数减一,反正整个数据集也没有什么顺序,这样的效率也不错。应该说,插入和删除对于顺序存储结构来说,效率是可以接受的,但这样的表由于无序造成查找的效率很低,前面我们有讲解,这就不在啰嗦。
如果查找的数据集是有序线性表,并且是顺序存储的,查找可以用折半、插值、斐波那契等查找算法来实现,可惜,因为有序,在插入和删除操作上,就需要耗费大量的时间。
有没有一种即可以使得插入和删除效率不错,又可以比较高效率地实现查找的算法呢?还真有。
我们在8.2节把这种需要在查找时插入或删除的查找表称为动态查找表。我们现在就来看看什么样的结构可以实现动态查找表的高效率。
如果在复杂的问题面前,我们束手无策的话,不妨先从最最简单的情况入手。现在我们的目标是插入和查找同样高效。假设我们的数据集开始只有一个数{62},然后现在需要将88插入数据集,于是数据集成了{62,88},还保持着从小到大有序。再查找有没有58,没有则插入,可此时要想在线性表的顺序存储中有序,就得移动62和88的位置,如图8-6-2左图,可不可以不移动呢?嗯,当然是可以,那就是二叉树结构。当我们用二叉树的方式时,首先我们将第一个数62定为根结点,88因为比62大,因此让它做62的右子树,58因比62小,所以成为它的左子树。此时58的插入并没有影响到62与88的关系,如图8-6-2右图所示。
图8-6-2
也就是说,若我们现在需要对集合{62,88,58,47,35,73,51,99,37,93}做查找,在我们打算创建此集合时就考虑用二叉树结构,而且是排好序的二叉树来创建。如图8-6-3所示,62、88、58创建好后,下一个数47因比58小,是它的左子树(见③),35是47的左子树(见④),73比62大,但却比88小,是88的左子树(见⑤),51比62小、比58小、比47大,是47的右子树(见⑥),99比62、88都大,是88的右子树(见⑦),37比62、58、47都小,但却比35大,是35的右子树(见⑧),93则因比62、88大是99的左子树(见⑨)。
图8-6-3
这样我们就得到了一棵二叉树,并且当我们对它进行中序遍历时,就可以得到一个有序的序列{35,37,47,51,58,62,73,88,93,99},所以我们通常称它为二叉排序树。
二叉排序树(Binary Sort Tree),又称为二叉查找树。它或者是一棵空树,或者是具有下列性质的二叉树。
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结构的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树。
从二叉排序树的定义也可以知道,它前提是二叉树,然后它采用了递归的定义方法,再者,它的结点间满足一定的次序关系,左子树结点一定比其双亲结点小,右子树结点一定比其双亲结点大。
构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除关键字的速度。不管怎么说,在一个有序数据集上的查找,速度总是要快于无序的数据集的,而二叉排序树这种非线性的结构,也有利于插入和删除的实现。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论