返回介绍

solution / 0100-0199 / 0123.Best Time to Buy and Sell Stock III / README_EN

发布于 2024-06-17 01:04:04 字数 5690 浏览 0 评论 0 收藏 0

123. Best Time to Buy and Sell Stock III

中文文档

Description

You are given an array prices where prices[i] is the price of a given stock on the ith day.

Find the maximum profit you can achieve. You may complete at most two transactions.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

 

Example 1:

Input: prices = [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

 

Constraints:

  • 1 <= prices.length <= 105
  • 0 <= prices[i] <= 105

Solutions

Solution 1: Dynamic Programming

We define the following variables:

  • f1 represents the maximum profit after the first purchase of the stock;
  • f2 represents the maximum profit after the first sale of the stock;
  • f3 represents the maximum profit after the second purchase of the stock;
  • f4 represents the maximum profit after the second sale of the stock.

During the traversal, we directly calculate f1, f2, f3, f4. We consider that buying and selling on the same day will result in a profit of $0$, which will not affect the answer.

Finally, return f4.

The time complexity is $O(n)$, where $n$ is the length of the prices array. The space complexity is $O(1)$.

class Solution:
  def maxProfit(self, prices: List[int]) -> int:
    # 第一次买入,第一次卖出,第二次买入,第二次卖出
    f1, f2, f3, f4 = -prices[0], 0, -prices[0], 0
    for price in prices[1:]:
      f1 = max(f1, -price)
      f2 = max(f2, f1 + price)
      f3 = max(f3, f2 - price)
      f4 = max(f4, f3 + price)
    return f4
class Solution {
  public int maxProfit(int[] prices) {
    // 第一次买入,第一次卖出,第二次买入,第二次卖出
    int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
    for (int i = 1; i < prices.length; ++i) {
      f1 = Math.max(f1, -prices[i]);
      f2 = Math.max(f2, f1 + prices[i]);
      f3 = Math.max(f3, f2 - prices[i]);
      f4 = Math.max(f4, f3 + prices[i]);
    }
    return f4;
  }
}
class Solution {
public:
  int maxProfit(vector<int>& prices) {
    int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
    for (int i = 1; i < prices.size(); ++i) {
      f1 = max(f1, -prices[i]);
      f2 = max(f2, f1 + prices[i]);
      f3 = max(f3, f2 - prices[i]);
      f4 = max(f4, f3 + prices[i]);
    }
    return f4;
  }
};
func maxProfit(prices []int) int {
  f1, f2, f3, f4 := -prices[0], 0, -prices[0], 0
  for i := 1; i < len(prices); i++ {
    f1 = max(f1, -prices[i])
    f2 = max(f2, f1+prices[i])
    f3 = max(f3, f2-prices[i])
    f4 = max(f4, f3+prices[i])
  }
  return f4
}
function maxProfit(prices: number[]): number {
  let [f1, f2, f3, f4] = [-prices[0], 0, -prices[0], 0];
  for (let i = 1; i < prices.length; ++i) {
    f1 = Math.max(f1, -prices[i]);
    f2 = Math.max(f2, f1 + prices[i]);
    f3 = Math.max(f3, f2 - prices[i]);
    f4 = Math.max(f4, f3 + prices[i]);
  }
  return f4;
}
impl Solution {
  #[allow(dead_code)]
  pub fn max_profit(prices: Vec<i32>) -> i32 {
    let mut f1 = -prices[0];
    let mut f2 = 0;
    let mut f3 = -prices[0];
    let mut f4 = 0;
    let n = prices.len();

    for i in 1..n {
      f1 = std::cmp::max(f1, -prices[i]);
      f2 = std::cmp::max(f2, f1 + prices[i]);
      f3 = std::cmp::max(f3, f2 - prices[i]);
      f4 = std::cmp::max(f4, f3 + prices[i]);
    }

    f4
  }
}
public class Solution {
  public int MaxProfit(int[] prices) {
    int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
    for (int i = 1; i < prices.Length; ++i) {
      f1 = Math.Max(f1, -prices[i]);
      f2 = Math.Max(f2, f1 + prices[i]);
      f3 = Math.Max(f3, f2 - prices[i]);
      f4 = Math.Max(f4, f3 + prices[i]);
    }
    return f4;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文