第一部分 新手入门
- 一 量化投资视频学习课程
- 二 Python 手把手教学
- 量化分析师的Python日记【第1天:谁来给我讲讲Python?】
- 量化分析师的Python日记【第2天:再接着介绍一下Python呗】
- 量化分析师的Python日记【第3天:一大波金融Library来袭之numpy篇】
- 量化分析师的Python日记【第4天:一大波金融Library来袭之scipy篇】
- 量化分析师的Python日记【第5天:数据处理的瑞士军刀pandas】
- 量化分析师的Python日记【第6天:数据处理的瑞士军刀pandas下篇
- 量化分析师的Python日记【第7天:Q Quant 之初出江湖】
- 量化分析师的Python日记【第8天 Q Quant兵器谱之函数插值】
- 量化分析师的Python日记【第9天 Q Quant兵器谱之二叉树】
- 量化分析师的Python日记【第10天 Q Quant兵器谱 -之偏微分方程1】
- 量化分析师的Python日记【第11天 Q Quant兵器谱之偏微分方程2】
- 量化分析师的Python日记【第12天:量化入门进阶之葵花宝典:因子如何产生和回测】
- 量化分析师的Python日记【第13天 Q Quant兵器谱之偏微分方程3】
- 量化分析师的Python日记【第14天:如何在优矿上做Alpha对冲模型】
- 量化分析师的Python日记【第15天:如何在优矿上搞一个wealthfront出来】
第二部分 股票量化相关
- 一 基本面分析
- 1.1 alpha 多因子模型
- 1.2 基本面因子选股
- 1.3 财报阅读 • [米缸量化读财报] 资产负债表-投资相关资产
- 1.4 股东分析
- 1.5 宏观研究
- 二 套利
- 三 事件驱动
- 四 技术分析
- 4.1 布林带
- 4.2 均线系统
- 4.3 MACD
- 4.4 阿隆指标 • 技术指标阿隆( Aroon )全解析
- 4.5 CCI • CCI 顺势指标探索
- 4.6 RSI
- 4.7 DMI • DMI 指标体系的构建及简单应用
- 4.8 EMV • EMV 技术指标的构建及应用
- 4.9 KDJ • KDJ 策略
- 4.10 CMO
- 4.11 FPC • FPC 指标选股
- 4.12 Chaikin Volatility
- 4.13 委比 • 实时计算委比
- 4.14 封单量
- 4.15 成交量 • 决战之地, IF1507 !
- 4.16 K 线分析 • 寻找夜空中最亮的星
- 五 量化模型
- 5.1 动量模型
- 5.2 Joseph Piotroski 9 F-Score Value Investing Model
- 5.3 SVR
- 5.4 决策树、随机树
- 5.5 钟摆理论
- 5.6 海龟模型
- 5.7 5217 策略
- 5.8 SMIA
- 5.9 神经网络
- 5.10 PAMR
- 5.11 Fisher Transform
- 5.12 分型假说, Hurst 指数
- 5.13 变点理论
- 5.14 Z-score Model
- 5.15 机器学习
- 5.16 DualTrust 策略和布林强盗策略
- 5.17 卡尔曼滤波
- 5.18 LPPL anti-bubble model
- 六 大数据模型
- 6.1 市场情绪分析
- 6.2 新闻热点
- 七 排名选股系统
- 八 轮动模型
- 九 组合投资
- 十 波动率
- 十一 算法交易
- 十二 中高频交易
- 十三 Alternative Strategy
第三部分 基金、利率互换、固定收益类
- 一 分级基金
- 二 基金分析
- 三 债券
- 四 利率互换
第四部分 衍生品相关
- 一 期权数据
- 二 期权系列
- 三 期权分析
- 四 期货分析
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
5.16 DualTrust 策略和布林强盗策略
谁能够帮忙实现DualTrust策略和布林强盗策略(BollingerBandit)?@薛昆Kelvin
@lookis:
DualTrust:
start = '2014-01-01' # 回测起始时间
end = '2015-01-01' # 回测结束时间
benchmark = 'HS300' # 策略参考标准
universe = set_universe("CYB") # 证券池,支持股票和基金
capital_base = 100000 # 起始资金
freq = 'm' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测
refresh_rate = 1 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd'时间间隔的单位为交易日,若freq = 'm'时间间隔为分钟
def initialize(account): # 初始化虚拟账户状态
account.k1 = 0.7
account.k2 = 0.7
account.cache = {}
account.holding_max = 10
account.holding = 0
account.buy_sell_line = {}
pass
def handle_data(account): # 每个交易日的买入卖出指令
#准备数据
if not account.current_date.strftime('%Y%m%d') in account.cache:
account.cache = {}
account.cache[account.current_date.strftime('%Y%m%d')] = account.get_daily_history(1)
if account.current_minute == "09:30":
return
#每天画一次线
if account.current_minute == "09:31":
account.buy_sell_line = {}
for stock in account.cache[account.current_date.strftime('%Y%m%d')]:
if stock in account.universe:
close = account.cache[account.current_date.strftime('%Y%m%d')][stock]["closePrice"][0]
low = account.cache[account.current_date.strftime('%Y%m%d')][stock]["lowPrice"][0]
high = account.cache[account.current_date.strftime('%Y%m%d')][stock]["highPrice"][0]
o = account.referencePrice[stock]
r = max(high - low, close - low)
account.buy_sell_line[stock] = {"buy": o + account.k1 * r, "sell": o - account.k2 * r}
else:
#每天剩余的时间根据画线买卖
for stock in account.buy_sell_line:
if stock in account.universe and stock in account.referencePrice and stock in account.valid_secpos:
if account.referencePrice[stock] < account.buy_sell_line[stock]["sell"]:
order_to(stock, 0)
account.holding -= 1
for stock in account.buy_sell_line:
if stock in account.universe and stock in account.referencePrice and not stock in account.valid_secpos:
if account.holding < account.holding_max and account.referencePrice[stock] > account.buy_sell_line[stock]["buy"]:
account.holding += 1
order_pct(stock, 1.0/account.holding_max)
return
回测看效果不是特别好…… LZ自己调一下参数吧
@JasonYichuan:
BollingerBandit很一般,不过没怎么调参数,看着办吧
import numpy as np
import pandas as pd
start = '2015-01-01' # 回测起始时间
end = '2015-11-26' # 回测结束时间
benchmark = 'HS300' # 策略参考标准
universe = set_universe('HS300') # 证券池,支持股票和基金
capital_base = 100000 # 起始资金
#commission = Commission(buycost=0.00025,sellcost=0.00025) # 佣金
freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测
refresh_rate = 1 # 调仓频率
# 全局参数
## Boll线参数
N = 20
k = 2
## ROC变动率参数
M = 20
## 平仓参数
E = 20
def initialize(account): # 初始化虚拟账户状态
# 持股代码以及持股时间
account.duration = pd.DataFrame(np.array([0]*len(universe)), index=universe, columns=['duration'])
account.amount = 400
def handle_data(account): # 每个交易日的买入卖出指令
hist = account.get_attribute_history('closePrice',50)
ticker_name = [] # 符合买入要求股票代码
for stk in account.universe: # 遍历股票池内所有股票,选出符合要求的股票
if np.isnan(account.referencePrice[stk]) or account.referencePrice[stk] == 0: # 停牌或是还没有上市等原因不能交易
continue
# 计算股票的BOLL线上下轨
## 计算MA
MA = np.mean(hist[stk][-N:])
## 计算标准差MD
MD = np.sqrt((sum(hist[stk][-N:] - MA)**2) / N)
## 计算MB、UP、DN线
MB =np.mean(hist[stk][-(N-1):])
UP = MB + k * MD
DN = MB - k * MD
# 计算股票的ROC
ROC = float(hist[stk][-1] - hist[stk][-M])/float(hist[stk][-M])
# 开仓条件
if (hist[stk][-1] > UP) and (ROC > 0):
ticker_name.append(stk)
# 若股票符合开仓条件且尚未持有,则买入
for stk in ticker_name:
if stk not in account.valid_secpos:
order(stk,account.amount)
account.duration.loc[stk]['duration'] = 1
# 对于持有的股票,若股票不符合平仓条件,则将持仓时间加1,否则卖出,并删除该持仓时间记录
for stk in account.valid_secpos:
T = max(E - account.duration.loc[stk]['duration'],10)
if hist[stk][-1] > np.mean(hist[stk][-T:]):
account.duration.loc[stk]['duration'] = account.duration.loc[stk]['duration'] + 1
else:
order_to(stk,0)
account.duration.loc[stk]['duration'] = 0
return
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论