返回介绍

Placement Rules 使用文档

发布于 2020-10-26 07:01:24 字数 12273 浏览 1305 评论 0 收藏 0

注意:

在配合使用 TiFlash 场景下,Placement Rules 功能进行过大量测试,可以在生产环境中使用。除配合使用 TiFlash 的场景外,单独开启 Placement Rules 没有经过大量测试,因此,不建议在生产环境单独开启该功能。

Placement Rules 是 PD 在 4.0 版本引入的试验特性,它是一套副本规则系统,用于指导 PD 针对不同类型的数据生成对应的调度。通过组合不同的调度规则,用户可以精细地控制任何一段连续数据的副本数量、存放位置、主机类型、是否参与 Raft 投票、是否可以担任 Raft leader 等属性。

规则系统介绍

整个规则系统的配置由多条规则即 Rule 组成。每条 Rule 可以指定不同的副本数量、Raft 角色、放置位置等属性,以及这条规则生效的 key range。PD 在进行调度时,会先根据 Region 的 key range 在规则系统中查到该 Region 对应的规则,然后再生成对应的调度,来使得 Region 副本的分布情况符合 Rule。

多条规则的 key range 可以有重叠部分的,即一个 Region 能匹配到多条规则。这种情况下 PD 根据 Rule 的属性来决定规则是相互覆盖还是同时生效。如果有多条规则同时生效,PD 会按照规则的堆叠次序依次去生成调度进行规则匹配。

此外,为了满足不同来源的规则相互隔离的需求,还引入了分组(Group)的概念。如果某条规则不希望与系统中的其他规则相互影响(比如被覆盖),可以使用单独的分组。

Placement Rules 示意图如下所示:

Placement rules overview

规则字段

以下是每条规则中各个字段的具体含义:

字段名类型及约束说明
GroupIDstring分组 ID,标识规则的来源
IDstring分组内唯一 ID
Indexint分组内堆叠次序
Overridetrue/false是否覆盖 index 的更小 Rule(限分组内)
StartKeystring,十六进制编码适用 Range 起始 key
EndKeystring,十六进制编码适用 Range 终止 key
Rolestring副本角色,包括 leader/follower/learner
Countint,正整数副本数量
LabelConstraint[]Constraint用于按 label 筛选节点
LocationLabels[]string用于物理隔离

LabelConstraint 与 Kubernetes 中的功能类似,支持通过 innotInexistsnotExists 四种原语来筛选 label。这四种原语的意义如下:

  • in:给定 key 的 label value 包含在给定列表中。
  • notIn:给定 key 的 label value 不包含在给定列表中。
  • exists:包含给定的 label key。
  • notExists:不包含给定的 label key。

LocationLabels 的意义和作用与 PD v4.0 之前的版本相同。比如配置 [zone,rack,host] 定义了三层的拓扑结构:集群分为多个 zone(可用区),每个 zone 下有多个 rack(机架),每个 rack 下有多个 host(主机)。PD 在调度时首先会尝试将 Region 的 Peer 放置在不同的 zone,假如无法满足(比如配置 3 副本但总共只有 2 个 zone)则保证放置在不同的 rack;假如 rack 的数量也不足以保证隔离,那么再尝试 host 级别的隔离,以此类推。

配置规则操作步骤

本节的操作步骤以使用 pd-ctl 工具为例,涉及到的命令也支持通过 HTTP API 进行调用。

开启 Placement Rules 特性

默认情况下,Placement Rules 特性是关闭的。要开启这个特性,可以集群初始化以前设置 PD 配置文件:

[replication]
enable-placement-rules = true

这样,PD 在初始化成功后会开启这个特性,并根据 max-replicaslocation-labels 配置生成对应的规则:

{
  "group_id": "pd",
  "id": "default",
  "start_key": "",
  "end_key": "",
  "role": "voter",
  "count": 3,
  "location_labels": ["zone", "rack", "host"]
}

如果是已经初始化过的集群,也可以通过 pd-ctl 进行在线开启:

pd-ctl config placement-rules enable

PD 同样将根据系统的 max-replicaslocation-labels 生成默认的规则。

注意:

开启 Placement Rules 后,原先的 max-replicaslocation-labels 配置项将不再生效。如果需要调整副本策略,应当使用 Placement Rules 相关接口。

关闭 Placement Rules 特性

使用 pd-ctl 可以关闭 Placement Rules 特性,切换为之前的调度策略。

pd-ctl config placement-rules disable

注意:

关闭 Placement Rules 后,PD 将使用原先的 max-replicaslocation-labels 配置。在 Placement Rules 开启期间对 Rule 的修改不会导致这两项配置的同步更新。此外,设置好的所有 Rule 都会保留在系统中,会在下次开启 Placement Rules 时被使用。

使用 pd-ctl 设置规则

注意:

规则的变更将实时地影响 PD 调度,不恰当的规则设置可能导致副本数较少,影响系统的高可用。

pd-ctl 支持使用多种方式查看系统中的 Rule,输出是 json 格式的 Rule 或 Rule 列表:

  • 查看所有规则列表

    pd-ctl config placement-rules show
  • 查看 PD Group 的所有规则列表

    pd-ctl config placement-rules show --group=pd
  • 查看对应 Group 和 ID 的某条规则

    pd-ctl config placement-rules show --group=pd --id=default
  • 查看 Region 所匹配的规则列表

    pd-ctl config placement-rules show --region=2

    上面的例子中 2 为 Region ID。

新增和编辑规则是类似的,需要把对应的规则写进文件,然后使用 save 命令保存至 PD:

cat > rules.json <<EOF
[
    {
        "group_id": "pd",
        "id": "rule1",
        "role": "voter",
        "count": 3,
        "location_labels": ["zone", "rack", "host"]
    },
    {
        "group_id": "pd",
        "id": "rule2",
        "role": "voter",
        "count": 2,
        "location_labels": ["zone", "rack", "host"]
    }
]
EOF
pd-ctl config placement save --in=rules.json

以上操作会将 rule1、rule2 两条规则写入 PD,如果系统中已经存在 GroupID+ID 相同的规则,则会覆盖该规则。

如果需要删除某条规则,只需要将规则的 count 置为 0 即可,对应 GroupID+ID 相同的规则会被删除。以下命令将删除 pd/rule2 这条规则:

cat > rules.json <<EOF
[
    {
        "group_id": "pd",
        "id": "rule2"
    }
]
EOF
pd-ctl config placement save --in=rules.json

pd-ctl 还支持通过 load 命令将规则直接转存至文件以方便进行修改,只需要将查看命令的 show 改为 load

pd-ctl config placement-rules load

以上命令将所有规则转存至 rules.json 文件。

pd-ctl config placement-rules load --group=pd --out=rule.txt

以上命令将 PD Group 的规则转存至 rule.txt 文件。

使用 tidb-ctl 查询表相关的 key range

若需要针对元数据或某个特定的表进行特殊配置,可以通过 tidb-ctlkeyrange 命令 来查询相关的 key。注意要添加 --encode 返回 PD 中的表示形式。

tidb-ctl keyrange --database test --table ttt --encode
global ranges:
  meta: (6d00000000000000f8, 6e00000000000000f8)
  table: (7400000000000000f8, 7500000000000000f8)
table ttt ranges: (NOTE: key range might be changed after DDL)
  table: (7480000000000000ff2d00000000000000f8, 7480000000000000ff2e00000000000000f8)
  table indexes: (7480000000000000ff2d5f690000000000fa, 7480000000000000ff2d5f720000000000fa)
    index c2: (7480000000000000ff2d5f698000000000ff0000010000000000fa, 7480000000000000ff2d5f698000000000ff0000020000000000fa)
    index c3: (7480000000000000ff2d5f698000000000ff0000020000000000fa, 7480000000000000ff2d5f698000000000ff0000030000000000fa)
    index c4: (7480000000000000ff2d5f698000000000ff0000030000000000fa, 7480000000000000ff2d5f698000000000ff0000040000000000fa)
  table rows: (7480000000000000ff2d5f720000000000fa, 7480000000000000ff2e00000000000000f8)

注意:

DDL 等操作会导致 table ID 发生变化,需要同步更新对应的规则。

典型场景示例

本部分介绍 Placement Rules 的使用场景示例。

场景一:普通的表使用 3 副本,元数据使用 5 副本提升集群容灾能力

只需要增加一条规则,将 key range 限定在 meta 数据的范围,并把 count 值设为 5。添加规则示例如下:

{
  "group_id": "pd",
  "id": "meta",
  "index": 1,
  "override": true,
  "start_key": "6d00000000000000f8",
  "end_key": "6e00000000000000f8",
  "role": "voter",
  "count": "5",
  "location_labels": ["zone", "rack", "host"]
}

场景二:5 副本按 2-2-1 的比例放置在 3 个数据中心,且第 3 个中心不产生 Leader

创建三条规则,分别设置副本数为 2、2、1,并且在每个规则内通过 label_constraints 将副本限定在对应的数据中心内。另外,不需要 leader 的数据中心将 role 改为 follower

[
    {
        "group_id": "pd",
        "id": "zone1",
        "start_key": "",
        "end_key": "",
        "role": "voter",
        "count": 2,
        "label_constraints": [
            {"key": "zone", "op": "in", "values": ["zone1"]}
        ],
        "location_labels": ["rack", "host"]
    },
    {
        "group_id": "pd",
        "id": "zone2",
        "start_key": "",
        "end_key": "",
        "role": "voter",
        "count": 2,
        "label_constraints": [
            {"key": "zone", "op": "in", "values": ["zone2"]}
        ],
        "location_labels": ["rack", "host"]
    },
    {
        "group_id": "pd",
        "id": "zone3",
        "start_key": "",
        "end_key": "",
        "role": "follower",
        "count": 1,
        "label_constraints": [
            {"key": "zone", "op": "in", "values": ["zone3"]}
        ],
        "location_labels": ["rack", "host"]
    }
]

场景三:为某张表添加 2 个 TiFlash Learner 副本

为表的 row key 单独添加一条规则,限定数量为 2,并且通过 label_constraints 保证副本产生在 engine=tiflash 的节点。注意这里使用了单独的 group_id,保证这条规则不会与系统中其他来源的规则互相覆盖或产生冲突。

{
  "group_id": "tiflash",
  "id": "learner-replica-table-ttt",
  "start_key": "7480000000000000ff2d5f720000000000fa",
  "end_key": "7480000000000000ff2e00000000000000f8",
  "role": "learner",
  "count": 2,
  "label_constraints": [
    {"key": "engine", "op": "in", "values": ["tiflash"]}
  ],
  "location_labels": ["host"]
}

场景四:为某张表在有高性能磁盘的北京节点添加 2 个 Follower 副本

这个例子展示了比较复杂的 label_constraints 配置,下面的例子限定了副本放置在 bj1 或 bj2 机房,且磁盘类型不能为 hdd。

{
  "group_id": "follower-read",
  "id": "follower-read-table-ttt",
  "start_key": "7480000000000000ff2d00000000000000f8",
  "end_key": "7480000000000000ff2e00000000000000f8",
  "role": "follower",
  "count": 2,
  "label_constraints": [
    {"key": "zone", "op": "in", "values": ["bj1", "bj2"]},
    {"key": "disk", "op": "notIn", "values": ["hdd"]}
  ],
  "location_labels": ["host"]
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文