返回介绍

MongoDB遇见Spark

发布于 2024-10-04 20:57:09 字数 8705 浏览 0 评论 0 收藏 0

传统Spark生态系统

那么Mongodb作为一个database, 可以担任什么样的角色呢? 就是数据存储这部分, 也就是图中的黑色圈圈HDFS的部分, 如下图

用MongoDB替换HDFS后的Spark生态系统

为什么要用MongoDB替换HDFS

  1. 存储方式上, HDFS以文件为单位,每个文件64MB~128MB不等, 而MongoDB作为文档数据库则表现得更加细颗粒化
  2. MongoDB支持HDFS所没有的索引的概念, 所以在读取上更加快
  3. MongoDB支持的增删改功能比HDFS更加易于修改写入后

  4. HDFS的响应级别为分钟, 而MongoDB通常是毫秒级别

  5. 如果现有数据库已经是MongoDB的话, 那就不用再转存一份到HDFS上了
  6. 可以利用MongoDB强大的Aggregate做数据的筛选或预处理

MongoDB Spark Connector介绍

  1. 支持读取和写入,即可以将计算后的结果写入MongoDB
  2. 将查询拆分为n个子任务, 如Connector会将一次match,拆分为多个子任务交给spark来处理, 减少数据的全量读取

MongoDB Spark 示例代码

计算用类型Type=1的message字符数并按userid进行分组
开发Maven dependency配置

这里用的是mongo-spark-connector_2.11 的2.0.0版本和spark的spark-core_2.11的2.0.2版本

    <dependency>
        <groupId>org.mongodb.spark</groupId>
        <artifactId>mongo-spark-connector_2.11</artifactId>
        <version>2.0.0</version>
    </dependency>

    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>2.0.2</version>
    </dependency>
示例代码
    import com.mongodb.spark._
    import org.apache.spark.{SparkConf, SparkContext}
    import org.bson._


    val conf = new SparkConf()
      .setMaster("local")
      .setAppName("Mingdao-Score")
      //同时还支持mongo驱动的readPreference配置, 可以只从secondary读取数据
      .set("spark.mongodb.input.uri", "mongodb://xxx.xxx.xxx.xxx:27017,xxx.xxx.xxx:27017,xxx.xxx.xxx:27017/inputDB.collectionName")
      .set("spark.mongodb.output.uri", "mongodb://xxx.xxx.xxx.xxx:27017,xxx.xxx.xxx:27017,xxx.xxx.xxx:27017/outputDB.collectionName")

    val sc = new SparkContext(conf)
    // 创建rdd
    val originRDD = MongoSpark.load(sc)

    // 构造查询
    val dateQuery = new BsonDocument()
      .append("$gte", new BsonDateTime(start.getTime))
      .append("$lt", new BsonDateTime(end.getTime))
    val matchQuery = new Document("$match", BsonDocument.parse("{\"type\":\"1\"}"))

    // 构造Projection
    val projection1 = new BsonDocument("$project", BsonDocument.parse("{\"userid\":\"$userid\",\"message\":\"$message\"}")

    val aggregatedRDD = originRDD.withPipeline(Seq(matchQuery, projection1))

    //比如计算用户的消息字符数
    val rdd1 = aggregatedRDD.keyBy(x=>{
      Map(
        "userid" -> x.get("userid")
      )
    })

    val rdd2 = rdd1.groupByKey.map(t=>{
      (t._1, t._2.map(x => {
        x.getString("message").length
      }).sum)
    })

    rdd2.collect().foreach(x=>{
        println(x)
    })

    //保持统计结果至MongoDB outputurl 所指定的数据库
    MongoSpark.save(rdd2)

总结

MongoDB Connector 的文档只有基础的示例代码, 具体详情需要看GitHub中的example和部分源码

参考链接

mongo-spark/examples/src/test/python/introduction.py
# -*- coding: UTF-8 -*-
#
# Copyright 2016 MongoDB, Inc.
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# To run this example use:
# ./bin/spark-submit --master "local[4]"  \
#                    --conf "spark.mongodb.input.uri=mongodb://127.0.0.1/test.coll?readPreference=primaryPreferred" \
#                    --conf "spark.mongodb.output.uri=mongodb://127.0.0.1/test.coll" \
#                    --packages org.mongodb.spark:mongo-spark-connector_2.11:2.0.0 \
#                    introduction.py

from pyspark.sql import SparkSession

if __name__ == "__main__":

    spark = SparkSession.builder.appName("Python Spark SQL basic example").getOrCreate()

    logger = spark._jvm.org.apache.log4j
    logger.LogManager.getRootLogger().setLevel(logger.Level.FATAL)

    # Save some data
    characters = spark.createDataFrame([("Bilbo Baggins",  50), ("Gandalf", 1000), ("Thorin", 195), ("Balin", 178), ("Kili", 77), ("Dwalin", 169), ("Oin", 167), ("Gloin", 158), ("Fili", 82), ("Bombur", None)], ["name", "age"])
    characters.write.format("com.mongodb.spark.sql").mode("overwrite").save()

    # print the schema
    print("Schema:")
    characters.printSchema()

    # read from MongoDB collection
    df = spark.read.format("com.mongodb.spark.sql").load()

    # SQL
    df.registerTempTable("temp")
    centenarians = spark.sql("SELECT name, age FROM temp WHERE age >= 100")
    print("Centenarians:")
    centenarians.show()

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文