返回介绍

solution / 0800-0899 / 0897.Increasing Order Search Tree / README_EN

发布于 2024-06-17 01:03:33 字数 5918 浏览 0 评论 0 收藏 0

897. Increasing Order Search Tree

中文文档

Description

Given the root of a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only one right child.

 

Example 1:

Input: root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]

Example 2:

Input: root = [5,1,7]
Output: [1,null,5,null,7]

 

Constraints:

  • The number of nodes in the given tree will be in the range [1, 100].
  • 0 <= Node.val <= 1000

Solutions

Solution 1: DFS In-order Traversal

We define a virtual node $dummy$, initially the right child of $dummy$ points to the root node $root$, and a pointer $prev$ points to $dummy$.

We perform an in-order traversal on the binary search tree. During the traversal, each time we visit a node, we point the right child of $prev$ to it, then set the left child of the current node to null, and assign the current node to $prev$ for the next traversal.

After the traversal ends, the original binary search tree is modified into a singly linked list with only right child nodes. We then return the right child of the virtual node $dummy$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary search tree.

# Definition for a binary tree node.
# class TreeNode:
#   def __init__(self, val=0, left=None, right=None):
#     self.val = val
#     self.left = left
#     self.right = right
class Solution:
  def increasingBST(self, root: TreeNode) -> TreeNode:
    def dfs(root):
      if root is None:
        return
      nonlocal prev
      dfs(root.left)
      prev.right = root
      root.left = None
      prev = root
      dfs(root.right)

    dummy = prev = TreeNode(right=root)
    dfs(root)
    return dummy.right
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *   int val;
 *   TreeNode left;
 *   TreeNode right;
 *   TreeNode() {}
 *   TreeNode(int val) { this.val = val; }
 *   TreeNode(int val, TreeNode left, TreeNode right) {
 *     this.val = val;
 *     this.left = left;
 *     this.right = right;
 *   }
 * }
 */
class Solution {
  private TreeNode prev;
  public TreeNode increasingBST(TreeNode root) {
    TreeNode dummy = new TreeNode(0, null, root);
    prev = dummy;
    dfs(root);
    return dummy.right;
  }

  private void dfs(TreeNode root) {
    if (root == null) {
      return;
    }
    dfs(root.left);
    prev.right = root;
    root.left = null;
    prev = root;
    dfs(root.right);
  }
}
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *   int val;
 *   TreeNode *left;
 *   TreeNode *right;
 *   TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *   TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *   TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
  TreeNode* increasingBST(TreeNode* root) {
    TreeNode* dummy = new TreeNode(0, nullptr, root);
    TreeNode* prev = dummy;
    function<void(TreeNode*)> dfs = [&](TreeNode* root) {
      if (!root) {
        return;
      }
      dfs(root->left);
      prev->right = root;
      root->left = nullptr;
      prev = root;
      dfs(root->right);
    };
    dfs(root);
    return dummy->right;
  }
};
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *   Val int
 *   Left *TreeNode
 *   Right *TreeNode
 * }
 */
func increasingBST(root *TreeNode) *TreeNode {
  dummy := &TreeNode{Val: 0, Right: root}
  prev := dummy
  var dfs func(root *TreeNode)
  dfs = func(root *TreeNode) {
    if root == nil {
      return
    }
    dfs(root.Left)
    prev.Right = root
    root.Left = nil
    prev = root
    dfs(root.Right)
  }
  dfs(root)
  return dummy.Right
}
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *   val: number
 *   left: TreeNode | null
 *   right: TreeNode | null
 *   constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 *   }
 * }
 */

function increasingBST(root: TreeNode | null): TreeNode | null {
  const dummy = new TreeNode((right = root));
  let prev = dummy;
  const dfs = (root: TreeNode | null) => {
    if (!root) {
      return;
    }
    dfs(root.left);
    prev.right = root;
    root.left = null;
    prev = root;
    dfs(root.right);
  };
  dfs(root);
  return dummy.right;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文