返回介绍

solution / 1500-1599 / 1588.Sum of All Odd Length Subarrays / README

发布于 2024-06-17 01:03:17 字数 3861 浏览 0 评论 0 收藏 0

1588. 所有奇数长度子数组的和

English Version

题目描述

给你一个正整数数组 arr ,请你计算所有可能的奇数长度子数组的和。

子数组 定义为原数组中的一个连续子序列。

请你返回 arr 中 所有奇数长度子数组的和

 

示例 1:

输入:arr = [1,4,2,5,3]
输出:58
解释:所有奇数长度子数组和它们的和为:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58

示例 2:

输入:arr = [1,2]
输出:3
解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3 。

示例 3:

输入:arr = [10,11,12]
输出:66

 

提示:

  • 1 <= arr.length <= 100
  • 1 <= arr[i] <= 1000

 

进阶:

你可以设计一个 O(n) 时间复杂度的算法解决此问题吗?

解法

方法一:枚举 + 前缀和

我们可以枚举子数组的起点 $i$ 和终点 $j$,其中 $i \leq j$,维护每个子数组的和,然后判断子数组的长度是否为奇数,如果是,则将子数组的和加入答案。

时间复杂度 $O(n^2)$,空间复杂度 $O(1)$。其中 $n$ 是数组的长度。

class Solution:
  def sumOddLengthSubarrays(self, arr: List[int]) -> int:
    ans, n = 0, len(arr)
    for i in range(n):
      s = 0
      for j in range(i, n):
        s += arr[j]
        if (j - i + 1) & 1:
          ans += s
    return ans
class Solution {
  public int sumOddLengthSubarrays(int[] arr) {
    int n = arr.length;
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      int s = 0;
      for (int j = i; j < n; ++j) {
        s += arr[j];
        if ((j - i + 1) % 2 == 1) {
          ans += s;
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  int sumOddLengthSubarrays(vector<int>& arr) {
    int n = arr.size();
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      int s = 0;
      for (int j = i; j < n; ++j) {
        s += arr[j];
        if ((j - i + 1) & 1) {
          ans += s;
        }
      }
    }
    return ans;
  }
};
func sumOddLengthSubarrays(arr []int) (ans int) {
  n := len(arr)
  for i := range arr {
    s := 0
    for j := i; j < n; j++ {
      s += arr[j]
      if (j-i+1)%2 == 1 {
        ans += s
      }
    }
  }
  return
}
function sumOddLengthSubarrays(arr: number[]): number {
  const n = arr.length;
  let ans = 0;
  for (let i = 0; i < n; ++i) {
    let s = 0;
    for (let j = i; j < n; ++j) {
      s += arr[j];
      if ((j - i + 1) % 2 === 1) {
        ans += s;
      }
    }
  }
  return ans;
}
impl Solution {
  pub fn sum_odd_length_subarrays(arr: Vec<i32>) -> i32 {
    let n = arr.len();
    let mut ans = 0;
    for i in 0..n {
      let mut s = 0;
      for j in i..n {
        s += arr[j];
        if (j - i + 1) % 2 == 1 {
          ans += s;
        }
      }
    }
    ans
  }
}
int sumOddLengthSubarrays(int* arr, int arrSize) {
  int ans = 0;
  for (int i = 0; i < arrSize; ++i) {
    int s = 0;
    for (int j = i; j < arrSize; ++j) {
      s += arr[j];
      if ((j - i + 1) % 2 == 1) {
        ans += s;
      }
    }
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文