返回介绍

solution / 2200-2299 / 2290.Minimum Obstacle Removal to Reach Corner / README

发布于 2024-06-17 01:03:07 字数 6524 浏览 0 评论 0 收藏 0

2290. 到达角落需要移除障碍物的最小数目

English Version

题目描述

给你一个下标从 0 开始的二维整数数组 grid ,数组大小为 m x n 。每个单元格都是两个值之一:

  • 0 表示一个 单元格,
  • 1 表示一个可以移除的 障碍物

你可以向上、下、左、右移动,从一个空单元格移动到另一个空单元格。

现在你需要从左上角 (0, 0) 移动到右下角 (m - 1, n - 1) ,返回需要移除的障碍物的 最小 数目。

 

示例 1:

输入:grid = [[0,1,1],[1,1,0],[1,1,0]]
输出:2
解释:可以移除位于 (0, 1) 和 (0, 2) 的障碍物来创建从 (0, 0) 到 (2, 2) 的路径。
可以证明我们至少需要移除两个障碍物,所以返回 2 。
注意,可能存在其他方式来移除 2 个障碍物,创建出可行的路径。

示例 2:

输入:grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]]
输出:0
解释:不移除任何障碍物就能从 (0, 0) 到 (2, 4) ,所以返回 0 。

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 2 <= m * n <= 105
  • grid[i][j]0 1
  • grid[0][0] == grid[m - 1][n - 1] == 0

解法

方法一:双端队列 BFS

本题实际上也是最短路模型,只不过求解的是移除障碍物的最小数目。

在一个边权只有 $0$, $1$ 的无向图中搜索最短路径可以使用双端队列进行 $BFS$。其原理是当前可以扩展到的点的权重为 $0$ 时,将其加入队首;权重为 $1$ 时,将其加入队尾。

如果某条边权值为 $0$,那么新拓展出的节点权值就和当前队首节点权值相同,显然可以作为下一次拓展的起点。

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。

相似题目:

class Solution:
  def minimumObstacles(self, grid: List[List[int]]) -> int:
    m, n = len(grid), len(grid[0])
    q = deque([(0, 0, 0)])
    vis = set()
    dirs = (-1, 0, 1, 0, -1)
    while 1:
      i, j, k = q.popleft()
      if i == m - 1 and j == n - 1:
        return k
      if (i, j) in vis:
        continue
      vis.add((i, j))
      for a, b in pairwise(dirs):
        x, y = i + a, j + b
        if 0 <= x < m and 0 <= y < n:
          if grid[x][y] == 0:
            q.appendleft((x, y, k))
          else:
            q.append((x, y, k + 1))
class Solution {
  public int minimumObstacles(int[][] grid) {
    int m = grid.length, n = grid[0].length;
    Deque<int[]> q = new ArrayDeque<>();
    q.offer(new int[] {0, 0, 0});
    int[] dirs = {-1, 0, 1, 0, -1};
    boolean[][] vis = new boolean[m][n];
    while (true) {
      var p = q.poll();
      int i = p[0], j = p[1], k = p[2];
      if (i == m - 1 && j == n - 1) {
        return k;
      }
      if (vis[i][j]) {
        continue;
      }
      vis[i][j] = true;
      for (int h = 0; h < 4; ++h) {
        int x = i + dirs[h], y = j + dirs[h + 1];
        if (x >= 0 && x < m && y >= 0 && y < n) {
          if (grid[x][y] == 0) {
            q.offerFirst(new int[] {x, y, k});
          } else {
            q.offerLast(new int[] {x, y, k + 1});
          }
        }
      }
    }
  }
}
class Solution {
public:
  int minimumObstacles(vector<vector<int>>& grid) {
    int m = grid.size(), n = grid[0].size();
    deque<tuple<int, int, int>> q{{0, 0, 0}};
    bool vis[m][n];
    memset(vis, 0, sizeof vis);
    int dirs[5] = {-1, 0, 1, 0, -1};
    while (1) {
      auto [i, j, k] = q.front();
      q.pop_front();
      if (i == m - 1 && j == n - 1) {
        return k;
      }
      if (vis[i][j]) {
        continue;
      }
      vis[i][j] = true;
      for (int h = 0; h < 4; ++h) {
        int x = i + dirs[h], y = j + dirs[h + 1];
        if (x >= 0 && x < m && y >= 0 && y < n) {
          if (grid[x][y] == 0) {
            q.push_front({x, y, k});
          } else {
            q.push_back({x, y, k + 1});
          }
        }
      }
    }
  }
};
func minimumObstacles(grid [][]int) int {
  m, n := len(grid), len(grid[0])
  q := doublylinkedlist.New()
  type tuple struct{ i, j, k int }
  q.Add(tuple{0, 0, 0})
  vis := make([][]bool, m)
  for i := range vis {
    vis[i] = make([]bool, n)
  }
  dirs := [5]int{-1, 0, 1, 0, -1}
  for {
    v, _ := q.Get(0)
    p := v.(tuple)
    q.Remove(0)
    i, j, k := p.i, p.j, p.k
    if i == m-1 && j == n-1 {
      return k
    }
    if vis[i][j] {
      continue
    }
    vis[i][j] = true
    for h := 0; h < 4; h++ {
      x, y := i+dirs[h], j+dirs[h+1]
      if x >= 0 && x < m && y >= 0 && y < n {
        if grid[x][y] == 0 {
          q.Insert(0, tuple{x, y, k})
        } else {
          q.Add(tuple{x, y, k + 1})
        }
      }
    }
  }
}
function minimumObstacles(grid: number[][]): number {
  const m = grid.length,
    n = grid[0].length;
  const dirs = [
    [0, 1],
    [0, -1],
    [1, 0],
    [-1, 0],
  ];
  let ans = Array.from({ length: m }, v => new Array(n).fill(Infinity));
  ans[0][0] = 0;
  let deque = [[0, 0]];
  while (deque.length) {
    let [x, y] = deque.shift();
    for (let [dx, dy] of dirs) {
      let [i, j] = [x + dx, y + dy];
      if (i < 0 || i > m - 1 || j < 0 || j > n - 1) continue;
      const cost = grid[i][j];
      if (ans[x][y] + cost >= ans[i][j]) continue;
      ans[i][j] = ans[x][y] + cost;
      deque.push([i, j]);
    }
  }
  return ans[m - 1][n - 1];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文