- Logstash
- Logstash - 入门示例
- 入门示例 - 下载安装
- 入门示例 - hello world
- 入门示例 - 配置语法
- 入门示例 - plugin的安装
- 入门示例 - 长期运行
- Logstash - 插件配置
- 插件配置 - input配置
- input配置 - file
- input配置 - stdin
- input配置 - syslog
- input配置 - tcp
- 插件配置 - codec配置
- codec配置 - json
- codec配置 - multiline
- codec配置 - collectd
- codec配置 - netflow
- 插件配置 - filter配置
- filter配置 - date
- filter配置 - grok
- filter配置 - dissect
- filter配置 - geoip
- filter配置 - json
- filter配置 - kv
- filter配置 - metrics
- filter配置 - mutate
- filter配置 - ruby
- filter配置 - split
- filter配置 - elapsed
- 插件配置 - output配置
- output配置 - elasticsearch
- output配置 - email
- output配置 - exec
- output配置 - file
- output配置 - nagios
- output配置 - statsd
- output配置 - stdout
- output配置 - tcp
- output配置 - hdfs
- Logstash - 场景示例
- 场景示例 - nginx访问日志
- 场景示例 - nginx错误日志
- 场景示例 - postfix日志
- 场景示例 - ossec日志
- 场景示例 - windows系统日志
- 场景示例 - Java日志
- 场景示例 - MySQL慢查询日志
- Logstash - 性能与测试
- 性能与测试 - generator方式
- 性能与测试 - 监控方案
- 监控方案 - logstash-input-heartbeat方式
- 监控方案 - jmx启动参数方式
- 监控方案 - API方式
- Logstash - 扩展方案
- 扩展方案 - 通过redis传输
- 扩展方案 - 通过kafka传输
- 扩展方案 - AIX 平台上的logstash-forwarder-java
- 扩展方案 - rsyslog
- 扩展方案 - nxlog
- 扩展方案 - heka
- 扩展方案 - fluent
- 扩展方案 - Message::Passing
- Logstash - 源码解析
- 源码解析 - pipeline流程
- 源码解析 - Event的生成
- Logstash - 插件开发
- 插件开发 - utmp插件示例
- Beats
- Beats - filebeat
- Beats - packetbeat网络流量分析
- Beats - metricbeat
- Beats - winlogbeat
- ElasticSearch
- ElasticSearch - 架构原理
- 架构原理 - segment、buffer和translog对实时性的影响
- 架构原理 - segment merge对写入性能的影响
- 架构原理 - routing和replica的读写过程
- 架构原理 - shard的allocate控制
- 架构原理 - 自动发现的配置
- ElasticSearch - 接口使用示例
- 接口使用示例 - 增删改查操作
- 接口使用示例 - 搜索请求
- 接口使用示例 - Painless脚本
- 接口使用示例 - reindex接口
- ElasticSearch - 性能优化
- 性能优化 - bulk提交
- 性能优化 - gateway配置
- 性能优化 - 集群状态维护
- 性能优化 - 缓存
- 性能优化 - fielddata
- 性能优化 - curator工具
- 性能优化 - profile接口
- ElasticSearch - rally测试方案
- ElasticSearch - 多集群互联
- ElasticSearch - 别名的应用
- ElasticSearch - 映射与模板的定制
- ElasticSearch - puppet-elasticsearch模块的使用
- ElasticSearch - 计划内停机升级的操作流程
- ElasticSearch - 镜像备份
- ElasticSearch - rollover和shrink
- ElasticSearch - Ingest节点
- ElasticSearch - Hadoop 集成
- Hadoop 集成 - spark streaming交互
- ElasticSearch - 权限管理
- 权限管理 - Shield
- 权限管理 - Search-Guard 在 Elasticsearch 2.x 上的运用
- ElasticSearch - 监控方案
- 监控方案 - 监控相关接口
- 监控相关接口 - 集群健康状态
- 监控相关接口 - 节点状态
- 监控相关接口 - 索引状态
- 监控相关接口 - 任务管理
- 监控相关接口 - cat 接口的命令行使用
- 监控方案 - 日志记录
- 监控方案 - 实时bigdesk方案
- 监控方案 - cerebro
- 监控方案 - zabbix trapper方案
- ElasticSearch - ES在运维监控领域的其他玩法
- ES在运维监控领域的其他玩法 - percolator接口
- ES在运维监控领域的其他玩法 - watcher报警
- ES在运维监控领域的其他玩法 - ElastAlert
- ES在运维监控领域的其他玩法 - 时序数据库
- ES在运维监控领域的其他玩法 - Grafana
- ES在运维监控领域的其他玩法 - juttle
- ES在运维监控领域的其他玩法 - Etsy的Kale异常检测
- Kibana 5
- Kibana 5 - 安装、配置和运行
- Kibana 5 - 生产环境部署
- Kibana 5 - discover功能
- Kibana 5 - 各visualize功能
- 各visualize功能 - area
- 各visualize功能 - table
- 各visualize功能 - line
- 各visualize功能 - markdown
- 各visualize功能 - metric
- 各visualize功能 - pie
- 各visualize功能 - tile map
- 各visualize功能 - vertical bar
- Kibana 5 - dashboard功能
- Kibana 5 - timelion 介绍
- Kibana 5 - console 介绍
- Kibana 5 - setting功能
- Kibana 5 - 常用sub agg示例
- 常用sub agg示例 - 函数堆栈链分析
- 常用sub agg示例 - 分图统计
- 常用sub agg示例 - TopN的时序趋势图
- 常用sub agg示例 - 响应时间的百分占比趋势图
- 常用sub agg示例 - 响应时间的概率分布在不同时段的相似度对比
- Kibana 5 - 源码解析
- 源码解析 - .kibana索引的数据结构
- 源码解析 - 主页入口
- 源码解析 - discover解析
- 源码解析 - visualize解析
- 源码解析 - dashboard解析
- Kibana 5 - 插件
- 插件 - 可视化开发示例
- 插件 - 后端开发示例
- 插件 - 完整app开发示例
- Kibana 5 - Kibana报表
- 竞品对比
接口使用示例 - reindex接口
Elasticsearch 本身不提供对索引的 rename,mapping 的 alter 等操作。所以,如果有需要对全索引数据进行导出,或者修改某个已有字段的 mapping 设置等情况下,我们只能通过 scroll API 导出全部数据,然后重新做一次索引写入。这个过程,叫做 reindex。
之前完成这个过程只能自己写程序或者用 logstash。5.0 中,Elasticsearch 将这个过程内置为 reindex API,但是要注意:这个接口并没有什么黑科技,其本质仅仅是将这段相同逻辑的代码预置分发而已。如果有复杂的数据变更操作等细节需求,依然需要自己编程完成。
下面分别给出这三种方法的示例:
Perl 客户端
Elastic 官方提供各种语言的客户端库,其中,Perl 库提供了对 reindex 比较方便的写法和示例。通过 cpanm Search::Elasticsearch
命令安装库完毕后,使用以下程序即可:
use Search::Elasticsearch;
my $es = Search::Elasticsearch->new(
nodes => ['192.168.0.2:9200']
);
my $bulk = $es->bulk_helper(
index => 'new_index',
);
$bulk->reindex(
source => {
index => 'old_index',
size => 500, # default
search_type => 'scan' # default
}
);
Logstash 做 reindex
在最新版的 Logstash 中,对 logstash-input-elasticsearch 插件做了一定的修改,使得通过 logstash 完成 reindex 成为可能。
reindex 操作的 logstash 配置如下:
input {
elasticsearch {
hosts => [ "192.168.0.2" ]
index => "old_index"
size => 500
scroll => "5m"
docinfo => true
}
}
output {
elasticsearch {
hosts => [ "192.168.0.3" ]
index => "%{[@metadata][_index]}"
document_type => "%{[@metadata][_type]}"
document_id => "%{[@metadata][_id]}"
}
}
如果你做 reindex 的源索引并不是 logstash 记录的内容,也就是没有 @timestamp
, @version
这两个 logstash 字段,那么可以在上面配置中添加一段 filter 配置,确保前后索引字段完全一致:
filter {
mutate {
remove_field => [ "@timestamp", "@version" ]
}
}
reindex API
简单的 reindex,可以很容易的完成:
curl -XPOST http://localhost:9200/_reindex -d '
{
"source": {
"index": "logstash-2016.10.29"
},
"dest": {
"index": "logstash-new-2016.10.29"
}
}'
复杂需求,也能通过配合其他 API,比如 script、pipeline 等来满足一些,下面举一个复杂的示例:
curl -XPOST http://localhost:9200/_reindex?requests_per_second=10000 -d '
{
"source": {
"remote": {
"host": "http://192.168.0.2:9200",
},
"index": "metricbeat-*",
"query": {
"match": {
"host": "webserver"
}
}
},
"dest": {
"index": "metricbeat",
"pipeline": "ingest-rule-1"
},
"script": {
"lang": "painless",
"inline": "ctx._index = 'metricbeat-' + (ctx._index.substring('metricbeat-'.length(), ctx._index.length())) + '-1'"
}
}'
上面这个请求的作用,是将来自 192.168.0.2 集群的 metricbeat-2016.10.29 索引中,有关 host:webserver
的数据,读取出来以后,经过 localhost 集群的 ingest-rule-1
规则处理,在写入 localhost 集群的 metricbeat-2016.10.29-1 索引中。
注意:读取远端集群数据需要先配置对应的 reindex.remote.whitelist:192.168.0.2:9200
到 elasticsearch.yml 的白名单里。
通过 reindex 接口运行的任务可以通过同样是 5.0 新引入的任务管理接口进行取消、修改等操作。详细介绍见后续任务管理章节。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论