- 译者序
- 前言
- 第1章 问答环节
- 第2章 Python 如何运行程序
- 第3章 如何运行程序
- 第4章 介绍 Python 对象类型
- 第5章 数字
- 第6章 动态类型简介
- 第7章 字符串
- 第8章 列表与字典
- 第9章 元组、文件及其他
- 第10章 Python 语句简介
- 第11章 赋值、表达式和打印
- 第12章 if 测试和语法规则
- 第13章 while 和 for 循环
- 第14章 迭代器和解析,第一部分
- 第15章 文档
- 第16章 函数基础
- 第17章 作用域
- 第18章 参数
- 第19章 函数的高级话题
- 第20章 迭代和解析,第二部分
- 第21章 模块:宏伟蓝图
- 第22章 模块代码编写基础
- 第23章 模块包
- 第24章 高级模块话题
- 第25章 OOP:宏伟蓝图
- 第27章 更多实例
- 第28章 类代码编写细节
- 第29章 运算符重载
- 第30章 类的设计
- 第31章 类的高级主题
- 第32章 异常基础
- 第34章 异常对象
- 第35章 异常的设计
- 第36章 Unicode 和字节字符串
- 字符串基础知识
- Python 的字符串类型
- 文本和二进制文件
- Python 3.0 中的字符串应用
- 转换
- 编码 Unicode 字符串
- 编码非ASCII文本
- 编码和解码非ASCII文本
- 其他 Unicode 编码技术
- 转换编码
- 在 Python 2.6 中编码 Unicode 字符串
- 源文件字符集编码声明
- 使用 Python 3.0 Bytes 对象
- 序列操作
- 创建 bytes 对象的其他方式
- 混合字符串类型
- 使用 Python 3.0(和 Python 2.6)bytearray 对象
- 使用文本文件和二进制文件
- Python 3.0 中的文本和二进制模式
- 类型和内容错误匹配
- 使用 Unicode 文件
- 在 Python 3.0 中处理 BOM
- Python 2.6 中的 Unicode 文件
- Python 3.0 中其他字符串工具的变化
- Struct二进制数据模块
- pickle对象序列化模块
- XML解析工具
- 本章小结
- 本章习题
- 习题解答
- 第37章 管理属性
- 第38章 装饰器
- 第39章 元类
- 附录A 安装和配置
- 附录B 各部分练习题的解答
- 作者介绍
- 封面介绍
类特性
简而言之,特性是一种对象,赋值给类属性名称。特性的产生是以三种方法(获得、设置以及删除运算的处理器)以及通过文档字符串调用内置函数property。如果任何参数以None传递或省略,该运算就不能支持。特性一般都是在class语句顶层赋值[例如,name=property(...)]。这样赋值时,对类属性本身的读取(例如,obj.name),就会自动传给property的一个读取方法。例如,__getattr__方法可让类拦截未定义属性的引用。
下面是相同的例子,改用特性来编写。(注意,特性对于所有的类可用,但是,对于拦截属性赋值,必须是Python 2.6中object派生的新式对象才有效):
就某些编码任务而言,特性比起传统技术不是那么复杂,而且运行起来更快。例如,当我们新增属性赋值运算支持时,特性就变得更有吸引力:输入的代码更少,对我们不希望动态计算的属性进行赋值运算时,不会发生额外的方法调用。
等效的经典类可能会引发额外的方法调用,而且需要通过属性字典传递属性赋值语句,以避免死循环(或者,对于新式类,会导向object超类的__setattr__)。
就这个简单的例子而言,特性似乎是赢家。然而,__getattr__和__setattr__的某些应用依然需要更为动态或通用的接口,超出特性所能直接提供的范围。例如,在大多数情况下,当类编写时,要支持的属性集无法确认,而且甚至无法以任何具体形式存在(例如,委托任意方法的引用给被包装/嵌入对象时)。在这种情况下,通用的__getattr__或__setattr__属性处理器外加传入的属性名,会是更好的选择。因为这类通用处理器也能处理较简单的情况,特性大致上就只是选用的扩展功能了。
要了解两个选项的详细内容,请参阅本书最后一部分的第37章。我们将从那里看到,使用函数装饰器语法来编写特性是可能的,这是本章稍后将要介绍的一个主题。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论