- 第 1 章 安装 Python
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.2. 使用 from module import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict: 一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 sys.modules
- 6.5. 与 Directory 共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用{n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究: 解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue
- 第 10 章 Scripts 和 Streams
- 10.2. 标准输入、输出和错误
- 10.3. 缓冲节点查询
- 10.4. 查找节点的直接子节点
- 10.5. 通过节点类型创建独立的处理句柄 Creating separate handlers by node type
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理被压缩的数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.2. 深入
- 13.3. 介绍 romantest.py
- 13.4. 正面测试(Testing for success)
- 13.5. 负面测试(Testing for failure)
- 13.6. 完备性检测(Testing for sanity)
- 第 14 章 以测试优先为原则的编程
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 有效编程(Functional Programming)
- 16.2. 找到路径
- 16.3. 过滤已访问列表
- 16.4. 关联已访问列表
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. Python license
- H.B. Terms and conditions for accessing or otherwise using Python
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
10.7. 全部放在一起
10.7. 全部放在一起
你已经了解很多基础的东西。让我们回来看看所有片段是如何整合到一起的。
作为开始,这里是一个接收命令行参数的脚本,它使用 getopt 模块。
def main(argv): ... try: opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) except getopt.GetoptError: ... for opt, arg in opts: ...
创建KantGenerator类的一个实例,然后将语法文件文件和源传给它,可能在命令行没有指定。
k = KantGenerator(grammar, source)
KantGenerator实例自动加载语法,它是一个 XML 文件。你使用自定义的 openAnything 函数打开这个文件(可能保存在一个本地文件中或者一个远程服务器上),然后使用内置的minidom 解析函数将 XML 解析为一棵 Python 对象树。
def _load(self, source): sock = toolbox.openAnything(source) xmldoc = minidom.parse(sock).documentElement sock.close()
哦,根据这种方式,你将使用到 XML 文档结构的知识建立一个引用的小缓冲,这些引用只是 XML 文档中的元素。
def loadGrammar(self, grammar): for ref in self.grammar.getElementsByTagName("ref"): self.refs[ref.attributes["id"].value] = ref
如果你在命令行中指定了某些源材料,你可以使用它;否则你将打开语法查找“顶层”引用(没有被其它的东西引用)并把它作为开始点。
def getDefaultSource(self): xrefs = {} for xref in self.grammar.getElementsByTagName("xref"): xrefs[xref.attributes["id"].value] = 1 xrefs = xrefs.keys() standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs] return '<xref id="%s"/>' % random.choice(standaloneXrefs)
现在你打开了了源材料。它是一个 XML 你每次解析一个节点。为了让代码分离并具备更高的可维护性,你可以使用针对每个节点类型的独立处理方法。
def parse_Element(self, node): handlerMethod = getattr(self, "do_%s" % node.tagName) handlerMethod(node)
通过语法的反弹,解析所有 p 元素的孩子,
def do_p(self, node): ... if doit: for child in node.childNodes: self.parse(child)
用任意一个孩子替换 choice 元素,
def do_choice(self, node): self.parse(self.randomChildElement(node))
并用对应 ref 元素的任意孩子替换 xref ,前面你已经进行了缓冲。
def do_xref(self, node): id = node.attributes["id"].value self.parse(self.randomChildElement(self.refs[id]))
最后,你以你的方式进行解析直到普通文本。
def parse_Text(self, node): text = node.data ... self.pieces.append(text)
你打印出来的。
def main(argv): ... k = KantGenerator(grammar, source) print k.output()
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论