返回介绍

solution / 1300-1399 / 1361.Validate Binary Tree Nodes / README_EN

发布于 2024-06-17 01:03:20 字数 6036 浏览 0 评论 0 收藏 0

1361. Validate Binary Tree Nodes

中文文档

Description

You have n binary tree nodes numbered from 0 to n - 1 where node i has two children leftChild[i] and rightChild[i], return true if and only if all the given nodes form exactly one valid binary tree.

If node i has no left child then leftChild[i] will equal -1, similarly for the right child.

Note that the nodes have no values and that we only use the node numbers in this problem.

 

Example 1:

Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,-1,-1,-1]
Output: true

Example 2:

Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,3,-1,-1]
Output: false

Example 3:

Input: n = 2, leftChild = [1,0], rightChild = [-1,-1]
Output: false

 

Constraints:

  • n == leftChild.length == rightChild.length
  • 1 <= n <= 104
  • -1 <= leftChild[i], rightChild[i] <= n - 1

Solutions

Solution 1: Union-Find

We can traverse each node $i$ and its corresponding left and right children $l$, $r$, using an array $vis$ to record whether the node has a parent:

  • If the child node already has a parent, it means there are multiple fathers, which does not meet the condition, so we return false directly.
  • If the child node and the parent node are already in the same connected component, it means a cycle will be formed, which does not meet the condition, so we return false directly.
  • Otherwise, we perform a union operation, set the corresponding position of the $vis$ array to true, and decrease the number of connected components by $1$.

After the traversal, we check whether the number of connected components in the union-find set is $1$. If it is, we return true, otherwise, we return false.

The time complexity is $O(n \times \alpha(n))$, and the space complexity is $O(n)$. Where $n$ is the number of nodes, and $\alpha(n)$ is the inverse Ackermann function, which is less than $5$.

class Solution:
  def validateBinaryTreeNodes(
    self, n: int, leftChild: List[int], rightChild: List[int]
  ) -> bool:
    def find(x: int) -> int:
      if p[x] != x:
        p[x] = find(p[x])
      return p[x]

    p = list(range(n))
    vis = [False] * n
    for i, (a, b) in enumerate(zip(leftChild, rightChild)):
      for j in (a, b):
        if j != -1:
          if vis[j] or find(i) == find(j):
            return False
          p[find(i)] = find(j)
          vis[j] = True
          n -= 1
    return n == 1
class Solution {
  private int[] p;

  public boolean validateBinaryTreeNodes(int n, int[] leftChild, int[] rightChild) {
    p = new int[n];
    for (int i = 0; i < n; ++i) {
      p[i] = i;
    }
    boolean[] vis = new boolean[n];
    for (int i = 0, m = n; i < m; ++i) {
      for (int j : new int[] {leftChild[i], rightChild[i]}) {
        if (j != -1) {
          if (vis[j] || find(i) == find(j)) {
            return false;
          }
          p[find(i)] = find(j);
          vis[j] = true;
          --n;
        }
      }
    }
    return n == 1;
  }

  private int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }
}
class Solution {
public:
  bool validateBinaryTreeNodes(int n, vector<int>& leftChild, vector<int>& rightChild) {
    int p[n];
    iota(p, p + n, 0);
    bool vis[n];
    memset(vis, 0, sizeof(vis));
    function<int(int)> find = [&](int x) {
      return p[x] == x ? x : p[x] = find(p[x]);
    };
    for (int i = 0, m = n; i < m; ++i) {
      for (int j : {leftChild[i], rightChild[i]}) {
        if (j != -1) {
          if (vis[j] || find(i) == find(j)) {
            return false;
          }
          p[find(i)] = find(j);
          vis[j] = true;
          --n;
        }
      }
    }
    return n == 1;
  }
};
func validateBinaryTreeNodes(n int, leftChild []int, rightChild []int) bool {
  p := make([]int, n)
  for i := range p {
    p[i] = i
  }
  var find func(int) int
  find = func(x int) int {
    if p[x] != x {
      p[x] = find(p[x])
    }
    return p[x]
  }
  vis := make([]bool, n)
  for i, a := range leftChild {
    for _, j := range []int{a, rightChild[i]} {
      if j != -1 {
        if vis[j] || find(i) == find(j) {
          return false
        }
        p[find(i)] = find(j)
        vis[j] = true
        n--
      }
    }
  }
  return n == 1
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文