返回介绍

solution / 1700-1799 / 1713.Minimum Operations to Make a Subsequence / README_EN

发布于 2024-06-17 01:03:15 字数 7468 浏览 0 评论 0 收藏 0

1713. Minimum Operations to Make a Subsequence

中文文档

Description

You are given an array target that consists of distinct integers and another integer array arr that can have duplicates.

In one operation, you can insert any integer at any position in arr. For example, if arr = [1,4,1,2], you can add 3 in the middle and make it [1,4,3,1,2]. Note that you can insert the integer at the very beginning or end of the array.

Return _the minimum number of operations needed to make _target_ a subsequence of _arr_._

A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements' relative order. For example, [2,7,4] is a subsequence of [4,2,3,7,2,1,4] (the underlined elements), while [2,4,2] is not.

 

Example 1:

Input: target = [5,1,3], arr = [9,4,2,3,4]
Output: 2
Explanation: You can add 5 and 1 in such a way that makes arr = [5,9,4,1,2,3,4], then target will be a subsequence of arr.

Example 2:

Input: target = [6,4,8,1,3,2], arr = [4,7,6,2,3,8,6,1]
Output: 3

 

Constraints:

  • 1 <= target.length, arr.length <= 105
  • 1 <= target[i], arr[i] <= 109
  • target contains no duplicates.

Solutions

Solution 1

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  @staticmethod
  def lowbit(x):
    return x & -x

  def update(self, x, val):
    while x <= self.n:
      self.c[x] = max(self.c[x], val)
      x += BinaryIndexedTree.lowbit(x)

  def query(self, x):
    s = 0
    while x:
      s = max(s, self.c[x])
      x -= BinaryIndexedTree.lowbit(x)
    return s


class Solution:
  def minOperations(self, target: List[int], arr: List[int]) -> int:
    d = {v: i for i, v in enumerate(target)}
    nums = [d[v] for v in arr if v in d]
    return len(target) - self.lengthOfLIS(nums)

  def lengthOfLIS(self, nums):
    s = sorted(set(nums))
    m = {v: i for i, v in enumerate(s, 1)}
    tree = BinaryIndexedTree(len(m))
    ans = 0
    for v in nums:
      x = m[v]
      t = tree.query(x - 1) + 1
      ans = max(ans, t)
      tree.update(x, t)
    return ans
class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    this.c = new int[n + 1];
  }

  public static int lowbit(int x) {
    return x & -x;
  }

  public void update(int x, int val) {
    while (x <= n) {
      c[x] = Math.max(c[x], val);
      x += lowbit(x);
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s = Math.max(s, c[x]);
      x -= lowbit(x);
    }
    return s;
  }
}

class Solution {
  public int minOperations(int[] target, int[] arr) {
    Map<Integer, Integer> d = new HashMap<>();
    for (int i = 0; i < target.length; ++i) {
      d.put(target[i], i);
    }
    List<Integer> nums = new ArrayList<>();
    for (int i = 0; i < arr.length; ++i) {
      if (d.containsKey(arr[i])) {
        nums.add(d.get(arr[i]));
      }
    }
    return target.length - lengthOfLIS(nums);
  }

  private int lengthOfLIS(List<Integer> nums) {
    TreeSet<Integer> ts = new TreeSet();
    for (int v : nums) {
      ts.add(v);
    }
    int idx = 1;
    Map<Integer, Integer> d = new HashMap<>();
    for (int v : ts) {
      d.put(v, idx++);
    }
    int ans = 0;
    BinaryIndexedTree tree = new BinaryIndexedTree(nums.size());
    for (int v : nums) {
      int x = d.get(v);
      int t = tree.query(x - 1) + 1;
      ans = Math.max(ans, t);
      tree.update(x, t);
    }
    return ans;
  }
}
class BinaryIndexedTree {
public:
  int n;
  vector<int> c;

  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int val) {
    while (x <= n) {
      c[x] = max(c[x], val);
      x += lowbit(x);
    }
  }

  int query(int x) {
    int s = 0;
    while (x > 0) {
      s = max(s, c[x]);
      x -= lowbit(x);
    }
    return s;
  }

  int lowbit(int x) {
    return x & -x;
  }
};

class Solution {
public:
  int minOperations(vector<int>& target, vector<int>& arr) {
    unordered_map<int, int> d;
    for (int i = 0; i < target.size(); ++i) d[target[i]] = i;
    vector<int> nums;
    for (int i = 0; i < arr.size(); ++i) {
      if (d.count(arr[i])) {
        nums.push_back(d[arr[i]]);
      }
    }
    return target.size() - lengthOfLIS(nums);
  }

  int lengthOfLIS(vector<int>& nums) {
    set<int> s(nums.begin(), nums.end());
    int idx = 1;
    unordered_map<int, int> d;
    for (int v : s) d[v] = idx++;
    BinaryIndexedTree* tree = new BinaryIndexedTree(d.size());
    int ans = 0;
    for (int v : nums) {
      int x = d[v];
      int t = tree->query(x - 1) + 1;
      ans = max(ans, t);
      tree->update(x, t);
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
  return x & -x
}

func (this *BinaryIndexedTree) update(x, val int) {
  for x <= this.n {
    if this.c[x] < val {
      this.c[x] = val
    }
    x += this.lowbit(x)
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    if s < this.c[x] {
      s = this.c[x]
    }
    x -= this.lowbit(x)
  }
  return s
}

func minOperations(target []int, arr []int) int {
  d := map[int]int{}
  for i, v := range target {
    d[v] = i
  }
  nums := []int{}
  for _, v := range arr {
    if i, ok := d[v]; ok {
      nums = append(nums, i)
    }
  }
  return len(target) - lengthOfLIS(nums)
}

func lengthOfLIS(nums []int) int {
  s := map[int]bool{}
  for _, v := range nums {
    s[v] = true
  }
  t := []int{}
  for v := range s {
    t = append(t, v)
  }
  sort.Ints(t)
  d := map[int]int{}
  for i, v := range t {
    d[v] = i + 1
  }
  tree := newBinaryIndexedTree(len(d))
  ans := 0
  for _, v := range nums {
    x := d[v]
    t := tree.query(x-1) + 1
    ans = max(ans, t)
    tree.update(x, t)
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文