4.9 栈的应用——四则运算表达式求值
4.9.1 后缀(逆波兰)表示法定义
栈的现实应用也很多,我们再来重点讲一个比较常见的应用:数学表达式的求值。
我们小学学数学的时候,有一句话是老师反复强调的,“先乘除,后加减,从左算到右,先括号内后括号外”。这个大家都不陌生。我记得我小时候,天天做这种加减乘除的数学作业,很烦,于是就偷偷拿了老爸的计算器来帮着算答案,对于单纯的两个数的加减乘除,的确是省心不少,我也因此潇洒了一两年。可后来要求要加减乘除,甚至还有带有大中小括号的四则运算,我发现老爸那个简陋的计算器不好使了。比如9+(3-1)×3+10÷2,这是一个非常简单的题目,心算也可以很快算出是20。可就这么简单的题目,计算器却不能在一次输入后马上得出结果,很是不方便。
当然,后来出的计算器就高级多了,它引入了四则运算表达式的概念,也可以输入括号了,所以现在的00后的小朋友们,更加可以偷懒、抄近路做数学作业了。
那么在新式计算器中或者计算机中,它是如何实现的呢?如果让你用C语言或其他高级语言实现对数学表达式的求值,你打算如何做?
这里面的困难就在于乘除在加减的后面,却要先运算,而加入了括号后,就变得更加复杂。不知道该如何处理。
但仔细观察后发现,括号都是成对出现的,有左括号就一定会有右括号,对于多重括号,最终也是完全嵌套匹配的。这用栈结构正好合适,只要碰到左括号,就将此左括号进栈,不管表达式有多少重括号,反正遇到左括号就进栈,而后面出现右括号时,就让栈顶的左括号出栈,期间让数字运算,这样,最终有括号的表达式从左到右巡查一遍,栈应该是由空到有元素,最终再因全部匹配成功后成为空栈。
但对于四则运算,括号也只是当中的一部分,先乘除后加减使得问题依然复杂,如何有效地处理它们呢?我们伟大的科学家想到了好办法。
20世纪50年代,波兰逻辑学家Jan·ukasiewicz,当时也和我们现在的同学们一样,困惑于如何才可以搞定这个四则运算,不知道他是否也像牛顿被苹果砸到头而想到万有引力的原理,或者还是阿基米德在浴缸中洗澡时想到判断皇冠是否纯金的办法,总之他也是灵感突现,想到了一种不需要括号的后缀表达法,我们也把它称为逆波兰(Reverse Polish Notation,RPN)表示。我想可能是他的名字太复杂了,所以后人只用他的国籍而不是姓名来命名,实在可惜。这也告诉我们,想要流芳百世,名字还要起得朗朗上口才行。这种后缀表示法,是表达式的一种新的显示方式,非常巧妙地解决了程序实现四则运算的难题。
我们先来看看,对于“9+(3-1)×3+10÷2”,如果要用后缀表示法应该是什么样子:“9 3 1-3*+102/+”,这样的表达式称为后缀表达式,叫后缀的原因在于所有的符号都是在要运算数字的后面出现。显然,这里没有了括号。对于从来没有接触过后缀表达式的同学来讲,这样的表述是很难受的。不过你不喜欢,有机器喜欢,比如我们聪明的计算机。
4.9.2 后缀表达式计算结果
为了解释后缀表达式的好处,我们先来看看,计算机如何应用后缀表达式计算出最终的结果20的。
后缀表达式:9 3 1-3*+10 2/+
规则:从左到右遍历表达式的每个数字和符号,遇到是数字就进栈,遇到是符号,就将处于栈顶两个数字出栈,进行运算,运算结果进栈,一直到最终获得结果。
1.初始化一个空栈。此栈用来对要运算的数字进出使用。如图4-9-1的左图所示。
2.后缀表达式中前三个都是数字,所以9、3、1进栈,如图4-9-1的右图所示。
图4-9-1
3.接下来是“-”,所以将栈中的1出栈作为减数,3出栈作为被减数,并运算3-1得到2,再将2进栈,如图4-9-2的左图所示。
4.接着是数字3进栈,如图4-9-2的右图所示。
图4-9-2
5.后面是“*”,也就意味着栈中3和2出栈,2与3相乘,得到6,并将6进栈,如图4-9-3的左图所示。
6.下面是“+”,所以栈中6和9出栈,9与6相加,得到15,将15进栈,如图4-9-3的右图所示。
图4-9-3
7.接着是10与2两数字进栈,如图4-9-4的左图所示。
8.接下来是符号“/”,因此,栈顶的2与10出栈,10与2相除,得到5,将5进栈,如图4-9-4的右图所示。
图4-9-4
9.最后一个是符号“+”,所以15与5出栈并相加,得到20,将20进栈,如图4-9-5的左图所示。10.结果是20出栈,栈变为空,如图4-9-5的右图所示。
图4-9-5
果然,后缀表达法可以很顺利解决计算的问题。现在除了睡觉的同学,应该都有同样的疑问,就是这个后缀表达式“9 3 1-3+10 2/+”是怎么出来的?这个问题不搞清楚,等于没有解决。所以下面,我们就来推导如何让“9+(3-1)×3+10÷2”转化为“9 3 1-3+10 2/+”。
4.9.3 中缀表达式转后缀表达式
我们把平时所用的标准四则运算表达式,即“9+(3-1)×3+10÷2”叫做中缀表达式。因为所有的运算符号都在两数字的中间,现在我们的问题就是中缀到后缀的转化。
中缀表达式“9+(3-1)×3+10÷2”转化为后缀表达式“9 3 1-3*+10 2/+”。
规则:从左到右遍历中缀表达式的每个数字和符号,若是数字就输出,即成为后缀表达式的一部分;若是符号,则判断其与栈顶符号的优先级,是右括号或优先级不高于栈顶符号(乘除优先加减)则栈顶元素依次出栈并输出,并将当前符号进栈,一直到最终输出后缀表达式为止。
1.初始化一空栈,用来对符号进出栈使用。如图4-9-6的左图所示。
图4-9-6
2.第一个字符是数字9,输出9,后面是符号“+”,进栈。如图4-9-6的右图所示。
3.第三个字符是“(”,依然是符号,因其只是左括号,还未配对,故进栈。如图4-9-7的左图所示。
4.第四个字符是数字3,输出,总表达式为93,接着是“-”,进栈。如图4-9-7的右图
图4-9-7
5.接下来是数字1,输出,总表达式为 9 31,后面是符号“)”,此时,我们需要去匹配此前的“(”,所以栈顶依次出栈,并输出,直到“(”出栈为止。此时左括号上方只有“-”,因此输出“-”。总的输出表达式为 9 3 1-。如图4-9-8的左图所示。
6.紧接着是符号“×”,因为此时的栈顶符号为“+”号,优先级低于“×”,因此不输出,“*”进栈。接着是数字3,输出,总的表达式为 9 3 1-3。如图4-9-8的右图所示。
图4-9-8
7.之后是符号“+”,此时当前栈顶元素“”比这个“+”的优先级高,因此栈中元素出栈并输出(没有比“+”号更低的优先级,所以全部出栈),总输出表达式为9 3 1-3+。然后将当前这个符号“+”进栈。也就是说,前6张图的栈底的“+”是指中缀表达式中开头的9后面那个“+”,而图4-9-9左图中的栈底(也是栈顶)的“+”是指“9+(3-1)×3+”中的最后一个“+”。
8.紧接着数字10,输出,总表达式变为9 31-3*+10。后是符号“÷”,所以“/”进栈。如图4-9-9的右图所示。
图4-9-9
9.最后一个数字2,输出,总的表达式为9 31-3+10 2。如图4-9-10的左图所示。10.因已经到最后,所以将栈中符号全部出栈并输出。最终输出的后缀表达式结果为93 1-3+10 2/+。如图4-9-10的右图所示。
图4-9-10
从刚才的推导中你会发现,要想让计算机具有处理我们通常的标准(中缀)表达式的能力,最重要的就是两步: 1.将中缀表达式转化为后缀表达式(栈用来进出运算的符号)。 2.将后缀表达式进行运算得出结果(栈用来进出运算的数字)。
整个过程,都充分利用了栈的后进先出特性来处理,理解好它其实也就理解好了栈这个数据结构。
好了,休息一下,一会儿我们继续,接下来会讲队列。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论