返回介绍

solution / 1800-1899 / 1847.Closest Room / README_EN

发布于 2024-06-17 01:03:14 字数 8800 浏览 0 评论 0 收藏 0

1847. Closest Room

中文文档

Description

There is a hotel with n rooms. The rooms are represented by a 2D integer array rooms where rooms[i] = [roomIdi, sizei] denotes that there is a room with room number roomIdi and size equal to sizei. Each roomIdi is guaranteed to be unique.

You are also given k queries in a 2D array queries where queries[j] = [preferredj, minSizej]. The answer to the jth query is the room number id of a room such that:

  • The room has a size of at least minSizej, and
  • abs(id - preferredj) is minimized, where abs(x) is the absolute value of x.

If there is a tie in the absolute difference, then use the room with the smallest such id. If there is no such room, the answer is -1.

Return _an array _answer_ of length _k_ where _answer[j]_ contains the answer to the _jth_ query_.

 

Example 1:

Input: rooms = [[2,2],[1,2],[3,2]], queries = [[3,1],[3,3],[5,2]]
Output: [3,-1,3]
Explanation: The answers to the queries are as follows:
Query = [3,1]: Room number 3 is the closest as abs(3 - 3) = 0, and its size of 2 is at least 1. The answer is 3.
Query = [3,3]: There are no rooms with a size of at least 3, so the answer is -1.
Query = [5,2]: Room number 3 is the closest as abs(3 - 5) = 2, and its size of 2 is at least 2. The answer is 3.

Example 2:

Input: rooms = [[1,4],[2,3],[3,5],[4,1],[5,2]], queries = [[2,3],[2,4],[2,5]]
Output: [2,1,3]
Explanation: The answers to the queries are as follows:
Query = [2,3]: Room number 2 is the closest as abs(2 - 2) = 0, and its size of 3 is at least 3. The answer is 2.
Query = [2,4]: Room numbers 1 and 3 both have sizes of at least 4. The answer is 1 since it is smaller.
Query = [2,5]: Room number 3 is the only room with a size of at least 5. The answer is 3.

 

Constraints:

  • n == rooms.length
  • 1 <= n <= 105
  • k == queries.length
  • 1 <= k <= 104
  • 1 <= roomIdi, preferredj <= 107
  • 1 <= sizei, minSizej <= 107

Solutions

Solution 1: Offline Query + Ordered Set + Binary Search

We notice that the order of queries does not affect the answer, and the problem involves the size relationship of room areas. Therefore, we can sort the queries in ascending order of minimum area, so that we can process each query from small to large. Also, we sort the rooms in ascending order of area.

Next, we create an ordered list and add all room numbers to the ordered list.

Then, we process each query from small to large. For each query, we first remove all rooms with an area less than or equal to the current query's minimum area from the ordered list. Then, in the remaining rooms, we use binary search to find the room number closest to the current query. If there is no such room, we return $-1$.

The time complexity is $O(n \times \log n + k \times \log k)$, and the space complexity is $O(n + k)$. Where $n$ and $k$ are the number of rooms and queries, respectively.

from sortedcontainers import SortedList


class Solution:
  def closestRoom(
    self, rooms: List[List[int]], queries: List[List[int]]
  ) -> List[int]:
    rooms.sort(key=lambda x: x[1])
    k = len(queries)
    idx = sorted(range(k), key=lambda i: queries[i][1])
    ans = [-1] * k
    i, n = 0, len(rooms)
    sl = SortedList(x[0] for x in rooms)
    for j in idx:
      prefer, minSize = queries[j]
      while i < n and rooms[i][1] < minSize:
        sl.remove(rooms[i][0])
        i += 1
      if i == n:
        break
      p = sl.bisect_left(prefer)
      if p < len(sl):
        ans[j] = sl[p]
      if p and (ans[j] == -1 or ans[j] - prefer >= prefer - sl[p - 1]):
        ans[j] = sl[p - 1]
    return ans
class Solution {
  public int[] closestRoom(int[][] rooms, int[][] queries) {
    int n = rooms.length;
    int k = queries.length;
    Arrays.sort(rooms, (a, b) -> a[1] - b[1]);
    Integer[] idx = new Integer[k];
    for (int i = 0; i < k; i++) {
      idx[i] = i;
    }
    Arrays.sort(idx, (i, j) -> queries[i][1] - queries[j][1]);
    int i = 0;
    TreeMap<Integer, Integer> tm = new TreeMap<>();
    for (int[] room : rooms) {
      tm.merge(room[0], 1, Integer::sum);
    }
    int[] ans = new int[k];
    Arrays.fill(ans, -1);
    for (int j : idx) {
      int prefer = queries[j][0], minSize = queries[j][1];
      while (i < n && rooms[i][1] < minSize) {
        if (tm.merge(rooms[i][0], -1, Integer::sum) == 0) {
          tm.remove(rooms[i][0]);
        }
        ++i;
      }
      if (i == n) {
        break;
      }
      Integer p = tm.ceilingKey(prefer);
      if (p != null) {
        ans[j] = p;
      }
      p = tm.floorKey(prefer);
      if (p != null && (ans[j] == -1 || ans[j] - prefer >= prefer - p)) {
        ans[j] = p;
      }
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> closestRoom(vector<vector<int>>& rooms, vector<vector<int>>& queries) {
    int n = rooms.size();
    int k = queries.size();
    sort(rooms.begin(), rooms.end(), [](const vector<int>& a, const vector<int>& b) {
      return a[1] < b[1];
    });
    vector<int> idx(k);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int i, int j) {
      return queries[i][1] < queries[j][1];
    });
    vector<int> ans(k, -1);
    int i = 0;
    multiset<int> s;
    for (auto& room : rooms) {
      s.insert(room[0]);
    }
    for (int j : idx) {
      int prefer = queries[j][0], minSize = queries[j][1];
      while (i < n && rooms[i][1] < minSize) {
        s.erase(s.find(rooms[i][0]));
        ++i;
      }
      if (i == n) {
        break;
      }
      auto it = s.lower_bound(prefer);
      if (it != s.end()) {
        ans[j] = *it;
      }
      if (it != s.begin()) {
        --it;
        if (ans[j] == -1 || abs(*it - prefer) <= abs(ans[j] - prefer)) {
          ans[j] = *it;
        }
      }
    }
    return ans;
  }
};
func closestRoom(rooms [][]int, queries [][]int) []int {
  n, k := len(rooms), len(queries)
  sort.Slice(rooms, func(i, j int) bool { return rooms[i][1] < rooms[j][1] })
  idx := make([]int, k)
  ans := make([]int, k)
  for i := range idx {
    idx[i] = i
    ans[i] = -1
  }
  sort.Slice(idx, func(i, j int) bool { return queries[idx[i]][1] < queries[idx[j]][1] })
  rbt := redblacktree.NewWithIntComparator()
  merge := func(rbt *redblacktree.Tree, key, value int) {
    if v, ok := rbt.Get(key); ok {
      nxt := v.(int) + value
      if nxt == 0 {
        rbt.Remove(key)
      } else {
        rbt.Put(key, nxt)
      }
    } else {
      rbt.Put(key, value)
    }
  }
  for _, room := range rooms {
    merge(rbt, room[0], 1)
  }
  i := 0

  for _, j := range idx {
    prefer, minSize := queries[j][0], queries[j][1]
    for i < n && rooms[i][1] < minSize {
      merge(rbt, rooms[i][0], -1)
      i++
    }
    if i == n {
      break
    }
    c, _ := rbt.Ceiling(prefer)
    f, _ := rbt.Floor(prefer)
    if c != nil {
      ans[j] = c.Key.(int)
    }
    if f != nil && (ans[j] == -1 || ans[j]-prefer >= prefer-f.Key.(int)) {
      ans[j] = f.Key.(int)
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文