返回介绍

01. Python 工具

02. Python 基础

03. Numpy

04. Scipy

05. Python 进阶

06. Matplotlib

07. 使用其他语言进行扩展

08. 面向对象编程

09. Theano 基础

10. 有趣的第三方模块

11. 有用的工具

12. Pandas

森林火灾模拟

发布于 2022-09-03 20:46:14 字数 7799 浏览 0 评论 0 收藏 0

之前我们已经构建好了一些基础,但是还没有开始对火灾进行模拟。

随机生长

  • 在原来的基础上,我们要先让树生长,即定义 grow_trees() 方法
  • 定义方法之前,我们要先指定两个属性:
    • 每个位置随机生长出树木的概率
    • 每个位置随机被闪电击中的概率
  • 为了方便,我们定义一个辅助函数来生成随机 bool 矩阵,大小与森林大小一致
  • 按照给定的生长概率生成生长的位置,将 trees 中相应位置设为 True

In [1]:

import numpy as np

class Forest(object):
    """ Forest can grow trees which eventually die."""
    def __init__(self, size=(150,150), p_sapling=0.0025, p_lightning=5.0e-6):
        self.size = size
        self.trees = np.zeros(self.size, dtype=bool)
        self.fires = np.zeros((self.size), dtype=bool)
        self.p_sapling = p_sapling
        self.p_lightning = p_lightning

    def __repr__(self):
        my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
        return my_repr

    def __str__(self):
        return self.__class__.__name__

    @property
    def num_cells(self):
        """Number of cells available for growing trees"""
        return np.prod(self.size)

    @property
    def tree_fraction(self):
        """
 Fraction of trees
 """
        num_trees = self.trees.sum()
        return float(num_trees) / self.num_cells

    @property
    def fire_fraction(self):
        """
 Fraction of fires
 """
        num_fires = self.fires.sum()
        return float(num_fires) / self.num_cells

    def _rand_bool(self, p):
        """
 Random boolean distributed according to p, less than p will be True
 """
        return np.random.uniform(size=self.trees.shape) < p

    def grow_trees(self):
        """
 Growing trees.
 """
        growth_sites = self._rand_bool(self.p_sapling)
        self.trees[growth_sites] = True

测试:

In [2]:

forest = Forest()
print forest.tree_fraction

forest.grow_trees()
print forest.tree_fraction
0.0
0.00293333333333

火灾模拟

  • 定义 start_fires()
    • 按照给定的概率生成被闪电击中的位置
    • 如果闪电击中的位置有树,那么将其设为着火点
  • 定义 burn_trees()
    • 如果一棵树的上下左右有火,那么这棵树也会着火
  • 定义 advance_one_step()
    • 进行一次生长,起火,燃烧

In [3]:

import numpy as np

class Forest(object):
    """ Forest can grow trees which eventually die."""
    def __init__(self, size=(150,150), p_sapling=0.0025, p_lightning=5.0e-6):
        self.size = size
        self.trees = np.zeros(self.size, dtype=bool)
        self.fires = np.zeros((self.size), dtype=bool)
        self.p_sapling = p_sapling
        self.p_lightning = p_lightning

    def __repr__(self):
        my_repr = "{}(size={})".format(self.__class__.__name__, self.size)
        return my_repr

    def __str__(self):
        return self.__class__.__name__

    @property
    def num_cells(self):
        """Number of cells available for growing trees"""
        return np.prod(self.size)

    @property
    def tree_fraction(self):
        """
 Fraction of trees
 """
        num_trees = self.trees.sum()
        return float(num_trees) / self.num_cells

    @property
    def fire_fraction(self):
        """
 Fraction of fires
 """
        num_fires = self.fires.sum()
        return float(num_fires) / self.num_cells

    def _rand_bool(self, p):
        """
 Random boolean distributed according to p, less than p will be True
 """
        return np.random.uniform(size=self.trees.shape) < p

    def grow_trees(self):
        """
 Growing trees.
 """
        growth_sites = self._rand_bool(self.p_sapling)
        self.trees[growth_sites] = True

    def start_fires(self):
        """
 Start of fire.
 """
        lightning_strikes = (self._rand_bool(self.p_lightning) & 
            self.trees)
        self.fires[lightning_strikes] = True

    def burn_trees(self):
        """
 Burn trees.
 """
        fires = np.zeros((self.size[0] + 2, self.size[1] + 2), dtype=bool)
        fires[1:-1, 1:-1] = self.fires
        north = fires[:-2, 1:-1]
        south = fires[2:, 1:-1]
        east = fires[1:-1, :-2]
        west = fires[1:-1, 2:]
        new_fires = (north | south | east | west) & self.trees
        self.trees[self.fires] = False
        self.fires = new_fires

    def advance_one_step(self):
        """
 Advance one step
 """
        self.grow_trees()
        self.start_fires()
        self.burn_trees()

In [4]:

forest = Forest()

for i in range(100):
    forest.advance_one_step()

使用 matshow() 显示树木图像:

In [5]:

import matplotlib.pyplot as plt
from matplotlib import cm

%matplotlib inline

plt.matshow(forest.trees, cmap=cm.Greens)

plt.show()

https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/O4g1RSh7X6ScJ0pR-V1550e.png alt="">

查看不同着火概率下的森林覆盖率趋势变化:

In [6]:

forest = Forest()
forest2 = Forest(p_lightning=5e-4)

tree_fractions = []

for i in range(2500):
    forest.advance_one_step()
    forest2.advance_one_step()
    tree_fractions.append((forest.tree_fraction, forest2.tree_fraction))

plt.plot(tree_fractions)

plt.show()

https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/LrSFXPsrRDJVTets-g9X9Wi.png alt="">

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文