- 简介
- 一、基础知识篇
- 二、工具篇
- 三、分类专题篇
- 四、技巧篇
- 五、高级篇
- 六、题解篇
- 6.1 Pwn
- 6.1.1 pwn HCTF2016 brop
- 6.1.2 pwn NJCTF2017 pingme
- 6.1.3 pwn XDCTF2015 pwn200
- 6.1.4 pwn BackdoorCTF2017 Fun-Signals
- 6.1.5 pwn GreHackCTF2017 beerfighter
- 6.1.6 pwn DefconCTF2015 fuckup
- 6.1.7 pwn 0CTF2015 freenote
- 6.1.8 pwn DCTF2017 Flex
- 6.1.9 pwn RHme3 Exploitation
- 6.1.10 pwn 0CTF2017 BabyHeap2017
- 6.1.11 pwn 9447CTF2015 Search-Engine
- 6.1.12 pwn N1CTF2018 vote
- 6.1.13 pwn 34C3CTF2017 readme_revenge
- 6.1.14 pwn 32C3CTF2015 readme
- 6.1.15 pwn 34C3CTF2017 SimpleGC
- 6.1.16 pwn HITBCTF2017 1000levels
- 6.1.17 pwn SECCONCTF2016 jmper
- 6.1.18 pwn HITBCTF2017 Sentosa
- 6.1.19 pwn HITBCTF2018 gundam
- 6.1.20 pwn 33C3CTF2016 babyfengshui
- 6.1.21 pwn HITCONCTF2016 Secret_Holder
- 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
- 6.1.23 pwn BCTF2016 bcloud
- 6.1.24 pwn HITCONCTF2016 HouseofOrange
- 6.1.25 pwn HCTF2017 babyprintf
- 6.1.26 pwn 34C3CTF2017 300
- 6.1.27 pwn SECCONCTF2016 tinypad
- 6.1.28 pwn ASISCTF2016 b00ks
- 6.1.29 pwn Insomni'hackteaserCTF2017 TheGreatEscapepart-3
- 6.1.30 pwn HITCONCTF2017 Ghostinthe_heap
- 6.1.31 pwn HITBCTF2018 mutepig
- 6.1.32 pwn SECCONCTF2017 vmnofun
- 6.1.33 pwn 34C3CTF2017 LFA
- 6.1.34 pwn N1CTF2018 memsafety
- 6.1.35 pwn 0CTF2018 heapstorm2
- 6.1.36 pwn NJCTF2017 messager
- 6.1.37 pwn sixstarctf2018 babystack
- 6.1.38 pwn HITCONCMT2017 pwn200
- 6.1.39 pwn BCTF2018 houseofAtum
- 6.1.40 pwn LCTF2016 pwn200
- 6.1.41 pwn PlaidCTF2015 PlaidDB
- 6.1.42 pwn hacklu2015 bookstore
- 6.1.43 pwn 0CTF2018 babyheap
- 6.1.44 pwn ASIS2017 start_hard
- 6.1.45 pwn LCTF2016 pwn100
- 6.2 Reverse
- 6.3 Web
- 6.1 Pwn
- 七、实战篇
- 7.1 CVE
- 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
- 7.1.2 CVE-2015-0235 glibc _nsshostnamedigitsdots 堆溢出漏洞
- 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
- 7.1.4 CVE-2017-13089 wget skipshortbody 栈溢出漏洞
- 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
- 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
- 7.1.7 CVE-2018-6323 GNU binutils elfobjectp 整型溢出漏洞
- 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
- 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
- 7.1 CVE
- 八、学术篇
- 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
- 8.2 Return-Oriented Programming without Returns
- 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
- 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
- 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
- 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
- 8.9 Symbolic Execution for Software Testing: Three Decades Later
- 8.10 AEG: Automatic Exploit Generation
- 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Software
- 8.13 New Frontiers of Reverse Engineering
- 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
- 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
- 8.22 Practical Memory Checking With Dr. Memory
- 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
- 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
- 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
- 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
- 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
- 8.28 Cross-Architecture Bug Search in Binary Executables
- 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
- 8.30 Preventing brute force attacks against stack canary protection on networking servers
- 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
- 8.34 Enhancing Symbolic Execution with Veritesting
- 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
- 8.39 DART: Directed Automated Random Testing
- 8.40 EXE: Automatically Generating Inputs of Death
- 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
- 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software
- 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
- 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
- 8.45 Ramblr: Making Reassembly Great Again
- 8.46 FreeGuard: A Faster Secure Heap Allocator
- 8.48 Reassembleable Disassembling
- 九、附录
1.4.3 JavaScript 基础
使用浏览器执行前端 JavaScript
大多数浏览器通过 F12 可以调出调试窗口,如图所示。在调试窗口中可以执行相关代码。JS 是一种解释性语言,由解释器对代码进行解析。
console.log("Hello World!")
在浏览器中,会集成 JS 的解析引擎,不同的浏览器拥有不同的解析引擎,这就使得 JS 的执行在不同浏览器上有不同的解释效果。
浏览器 | 引擎 |
---|---|
IE/Edge | Chakra |
Firefox | SpiderMonkey |
Safari | SFX |
Chrome | V8 |
Opera | Carakan |
嵌入在 HTML 中的 JS 代码通常有以下几种形式:
直接插入代码块
<script>console.log('Hello World!');</script>
加载外部 JS 文件
<script src="Hello.js"></script>
使用 HTML 标签中的事件属性
<a href="javascript:alert('Hello')"></a>
JavaScript 数据类型
作为弱类型的语言,JS 的变量声明不需要指定数据类型:
var pi=3.14;
var pi='ratio of the circumference of a circle to its diameter';
当然,可以通过“ new ”来声明变量类型:
var pi=new String;
var pi=new Number;
var pi=new Boolean;
var pi=new Array;
var pi=new Object;
上一个示例也展示了 JS 的数据类型,分别是字符串、数字、布尔值、数组和对象。
有两个特殊的类型是 Undefined 和 Null,形象一点区分,前者表示有坑在但坑中没有值,后者表示没有坑。另外,所有 JS 变量都是对象,但是需要注意的是,对象声明的字符串和直接赋值的字符串并不严格相等。
JavaScript 编程逻辑
基础
JS 语句使用分号分隔。
逻辑语句
if 条件语句:
if (condition)
{
代码块
}
else
{
代码块
}
switch 条件语句:
switch(n)
{
case 1:
代码块
break;
case 2:
代码块
break;
default:
代码块
}
for/for in 循环语句:
for (代码1;代码2;代码3)
{
代码块
}
for (x in xs)
{
代码块
}
while/do while 循环语句:
while (条件)
{
代码块
}
do
{
代码块
}
while (条件);
JavaScript 打印数据
在浏览器中调试代码时,经常用到的手段是打印变量。
函数 | 作用 |
---|---|
window.alert() | 弹出警告框 |
document.write() | 写入HTML文档 |
console.log() | 写入浏览器控制台 |
JavaScript 框架
JS 同样有许多功能强大的框架。大多数的前端 JS 框架使用外部引用的方式将 JS 文件引入到正在编写的文档中。
jQuery
jQuery 封装了常用的 JS 功能,通过选择器的机制来操纵 DOM 节点,完成复杂的前端效果展示。
Angular
实现了前端的 MVC 架构,通过动态数据绑定来简化数据传递流程。
React
利用组件来构建前端UI的框架
Vue
MVVM 构架的前端库,理论上讲,将它定义为数据驱动、组件化的框架,但这些概念也可能适用于其他框架,所以可能只有去真正使用到所有框架才能领悟到它们之间的区别。
其他
还有许许多多针对不同功能的框架,比如针对图表可视化、网络信息传递或者移动端优化等等。
双向数据绑定
传统基于 MVC 的架构的思想是数据单向的传送到 View 视图中进行显示,但是有时我们还需要将视图层的数据传输回模型层,这部分的功能就由前端 JS 来接手,因此许多近几年出现的新框架都使用数据双向绑定来完成MVVM的新构架,这就带给了用户更多的权限接触到程序的编程逻辑,进而产生一些安全问题,比较典型的就是许多框架曾经存在的模板注入问题。
JavaScript DOM 和 BOM
DOM | 文档对象模型,JS 通过操纵 DOM 可以动态获取、修改 HTML 中的元素、属性、CSS 样式,这种修改有时会带来 XSS 攻击风险 |
BOM | 浏览器对象模型,类比于 DOM,赋予 JS 对浏览器本身进行有限的操纵,获取 Cookie、地理位置、系统硬件或浏览器插件信息等 |
JavaScript 混淆
由于前端代码的可见性,出于知识产权或者其他目的,JS 代码通过混淆的方法使得自己既能被浏览器执行,又难以被人为解读。常见的混淆方法有重命名变量名和函数名、挤压代码、拼接字符、使用动态执行函数在函数与字符串之间进行替换等。下面对比代码混淆前后的差异。
混淆前:
console.log('Hello World!');
混淆后:
console["\x6c\x6f\x67"]('\x48\x65\x6c\x6c\x6f \x57\x6f\x72\x6c\x64\x21');
更加复杂的混淆后:
eval(function(p,a,c,k,e,d){e=function(c){return(c<a?"":e(parseInt(c/a)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--)d[e(c)]=k[c]||e(c);k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1;};while(c--)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p;}('1.0(\'3 2!\');',4,4,'log|console|World|Hello'.split('|'),0,{}))
由于之前提到的特性,无论混淆有多么复杂,最终它都能够在浏览器中被解释执行。
使用 Node.js 执行后端 JavaScript
在 安装完成 Node.js 后,我们可以尝试编写第一个后端 JS 程序。
1.打开文本编辑器,写入
console.log("Hello World");
并保存为 hello.js
2.使用
node hello.js
来执行文件。
Node.js 模块
Node.js 同样通过丰富的模块提供强大的功能,模块使用 npm 进行管理。
events
:事件模块,提供事件触发和事件监听功能util
:核心功能模块,用于弥补核心 JS 功能的不足fs
:文件操作模块,提供文件操作 APIhttp
:Web 协议模块,提供 Web 协议交互功能express
:Web 框架,用于快速构建 Web 应用服务vm
:沙箱模块,提供干净的上下文环境
后端 JS 就会存在其他语言后端所同样存在安全问题,包括基础的 Web 攻击、服务端模板注入、沙箱逃逸、内存溢出等问题。
参考资料
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论