- 第 1 章 安装 Python
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.2. 使用 from module import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict: 一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 sys.modules
- 6.5. 与 Directory 共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用{n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究: 解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue
- 第 10 章 Scripts 和 Streams
- 10.2. 标准输入、输出和错误
- 10.3. 缓冲节点查询
- 10.4. 查找节点的直接子节点
- 10.5. 通过节点类型创建独立的处理句柄 Creating separate handlers by node type
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理被压缩的数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.2. 深入
- 13.3. 介绍 romantest.py
- 13.4. 正面测试(Testing for success)
- 13.5. 负面测试(Testing for failure)
- 13.6. 完备性检测(Testing for sanity)
- 第 14 章 以测试优先为原则的编程
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 有效编程(Functional Programming)
- 16.2. 找到路径
- 16.3. 过滤已访问列表
- 16.4. 关联已访问列表
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. Python license
- H.B. Terms and conditions for accessing or otherwise using Python
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
7.4. 使用{n,m} 语法
7.4. 使用{n,m} 语法
- 7.4.1. 校验十位数和个位数
在 前面的章节,你处理了相同字符可以重复三次的情况,在正则表达式中有另外一个方式来表达这种情况,并且使代码的可读性更好。首先来看我们在前面的例子中使用的方法。
例 7.5. 老方法:每一个字符都是可选的
>>> import re >>> pattern = '^M?M?M?$' >>> re.search(pattern, 'M') <_sre.SRE_Match object at 0x008EE090> >>> pattern = '^M?M?M?$' >>> re.search(pattern, 'MM') <_sre.SRE_Match object at 0x008EEB48> >>> pattern = '^M?M?M?$' >>> re.search(pattern, 'MMM') <_sre.SRE_Match object at 0x008EE090> >>> re.search(pattern, 'MMMM') >>>
这个模式匹配串的开始,接着是第一个可选的字符M, 第二第三个M字符则被忽略,(这是可行的因为它们都是可选的),最后是字符串的结尾。 | |
这个模式匹配串的开始,接着是第一和第二个可选字符M ,而第三个M 字符被忽略(这是可行的因为它们都是可选的),最后匹配字符串的结尾。 | |
这个模式匹配字符串的开始,接着匹配所有的三个可选字符 M, 最后匹配字符串的结尾。 | |
这个模式匹配字符串的开始,接着匹配所有的三个可选字符M,但是不能够匹配字符串的结尾(因为还有一个未匹配的字符M),因此不能够匹配而返回一个None. |
例 7.6. 一个新的方法:From n to m
>>> pattern = '^M{0,3}$' >>> re.search(pattern, 'M') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MM') <_sre.SRE_Match object at 0x008EE090> >>> re.search(pattern, 'MMM') <_sre.SRE_Match object at 0x008EEDA8> >>> re.search(pattern, 'MMMM') >>>
这个模式意识是说:“匹配字符串的开始,接着匹配0到3个M字符,然后匹配字符串的结尾。” 可是是0到3之间的任何数字,如果你想要匹配至少1次,至多3次字符M,则可以写成 M{1,3}。 | |
这个模式匹配字符串的开始,接着匹配三个可选M字符中的一个,最后是字符串的结尾。 | |
这个模式匹配字符串的开始,接着匹配三个可选M字符中的两个,最后是字符串的结尾。 | |
这个模式匹配字符串的开始,接着匹配三个可选M字符中的三个,最后是字符串的结尾。 | |
这个模式匹配字符串的开始,接着匹配三个可选M字符中的三个,但是没有匹配字符串的结尾。正则表达式在字符串结尾之前最多只允许批评三次M字符,但是实际上有四个 M字符,因此模式没有匹配上这个字符串,返回一个None. |
没有一个轻松的方法来确定两个正则表达式是否为等价的,你能采用的最好的办法就是列出很多的测试样例,确定这两个正则表达式对所有的相关输入都有相同的输出。在本书后面的章节,关于如何书写测试样例有更多的讨论。 |
7.4.1. 校验十位数和个位数
现在我们来扩展扩展关于罗马数字的正则表达式,以匹配十位数和个位数,下面的例子展示十位数的校验方法。
例 7.7. 校验十位数
>>> pattern = '^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)$' >>> re.search(pattern, 'MCMXL') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MCML') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MCMLX') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MCMLXXX') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MCMLXXXX') >>>
这个模式匹配字符串的开始,接着是第一个可选字符M,接着是CM, 接着 XL, 接着是字符串的结尾。请记住,(A|B|C)这个语法的含义是“精确匹配A, B, 或者 C其中的一个”。此处匹配了XL, 因此不再匹配XC 和 L?X?X?X? ,接着就匹配到字符串的结尾。MCML表示罗马数字1940. | |
这个模式匹配字符串的开始,接着是第一个可选字符M,接着是CM, 接着 L?X?X?X?。在模式L?X?X?X?中,他匹配L字符并且跳过所有可选的X字符,接着匹配字符串的结尾。MCML 表示罗马数字1950. | |
这个模式匹配字符串的开始,接着是第一个可选字符M,接着是CM, 接着是可选的 L字符和可选的第一个X字符,并且跳过第二第三个可选的X字符,接着是字符串的结尾。 MCMLX表示罗马数字1960. | |
这个模式匹配字符串的开始,接着是第一个可选字符M,接着是CM, 接着是可选的 L字符和所有的三个可选的X字符,接着匹配字符串的结尾。MCMLXXX 表示罗马数字 1980. | |
这个模式匹配字符串的开始,接着是第一个可选字符M,接着是CM, 接着是可选的 L字符和所有的三个可选的X字符,接着就 未能匹配 字符串的结尾ie,因为还有一个未匹配的X 字符。所以整个模式匹配失败并返回一个 None. MCMLXXXX 不是一个有效的罗马数字。 |
对于个位数的正则表达式有类似的表达方式i,我将省略细节,直接展示结果。
>>> pattern = '^M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?I?I?I?)$'
用另一种{n,m}语法表达这个正则表达式会如何呢?这个例子展示新的语法。
例 7.8. 用{n,m}语法确认罗马数字
>>> pattern = '^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$' >>> re.search(pattern, 'MDLV') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MMDCLXVI') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'MMMMDCCCLXXXVIII') <_sre.SRE_Match object at 0x008EEB48> >>> re.search(pattern, 'I') <_sre.SRE_Match object at 0x008EEB48>
这个模式匹配字符串的开始,接着匹配四个可选的M字符的一个,接着匹配D?C{0,3},此处,紧紧匹配可选的字符D和0个可选字符C。继续向前匹配,匹配L?X{0,3},此处,匹配可选的L 字符和0个可选字符X,接着匹配V?I{0,3} ,此处,匹配可选的V和0个可选字符I,最后匹配字符串的结尾。MDLV 表示罗马数字1555. | |
这个模式匹配字符串的开始,接着是四个可选的M 字符的两个,接着匹配 D?C{0,3} ,此处为一个字符D和三个可选 C字符中的一个,接着匹配L?X{0,3},此处为一个L字符和三个可选X字符中的一个,接着匹配V?I{0,3},此处为一个字符V和三个可选I字符中的一个,接着匹配字符串的结尾。MMDCLXVI 表示罗马数字2666. | |
这个模式匹配字符串的开始,接着是四个可选的M字符的所有字符,接着匹配 D?C{0,3} ,此处为一个字符D和三个可选 C字符中所有字符,接着匹配L?X{0,3},此处为一个L字符和三个可选X字符中所有字符,接着匹配V?I{0,3},此处为一个字符V和三个可选I字符中所有字符,接着匹配字符串的结尾。MMMMDCCCLXXXVIII 表示罗马数字3888, 这个数字是不用扩展语法可以写出的最大的罗马数字。 | |
仔细看哪!(我象一个魔术师一样,“看仔细喽,孩子们,我将要从我的帽子中拽出一只兔子来啦!”) 这个模式匹配字符串的开始,接着匹配4个可选M字符的0个,接着匹配D?C{0,3},此处,跳过可选字符D并匹配三个可选C字符的0个,接着匹配L?X{0,3},此处,跳过可选字符L并匹配三个可选 X字符的0个,接着匹配V?I{0,3},此处跳过可选字符 V并且匹配三个可选I字符的一个,最后匹配字符串的结尾。哇赛! |
本章译者注:这个例子在正则表达式的匹配上没有问题,但是对于罗马数字的表示办法本身似乎有点问题,代表千位数的字符M,根据规定最多只能重复3次,但是在这个例子中重复了4次,但是这个罗马数字最后又表示3888,此处矛盾。不过,我们是为了搞清楚正则表达式的用法,罗马数字的表示法不是重点,因此从这个角度,这个例子没有问题。因此,在翻译的过程中保持了原文,大家在理解的时候需要注意一下这里。 |
如果你在第一遍就跟上并理解了所讲的这些,那么你做的比我还要好。现在,你可以尝试着理解别人大规模程序里关键函数中的正则表达式了。或者想象着几个月后回头理解你自己的正则表达式。我曾经做过这样的事情,但是它并不是那么好看。
在下一节里,你将会研究另外一种正则表达式语法,它可以使你的表达式具有更好的可维持性。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论