返回介绍

solution / 1500-1599 / 1545.Find Kth Bit in Nth Binary String / README

发布于 2024-06-17 01:03:18 字数 4492 浏览 0 评论 0 收藏 0

1545. 找出第 N 个二进制字符串中的第 K 位

English Version

题目描述

给你两个正整数 nk,二进制字符串  Sn 的形成规则如下:

  • S1 = "0"
  • i > 1 时,Si = Si-1 + "1" + reverse(invert(Si-1))

其中 + 表示串联操作,reverse(x) 返回反转 x 后得到的字符串,而 invert(x) 则会翻转 x 中的每一位(0 变为 1,而 1 变为 0)。

例如,符合上述描述的序列的前 4 个字符串依次是:

  • S= "0"
  • S= "011"
  • S= "0111001"
  • S4 = "011100110110001"

请你返回  Snk 位字符 ,题目数据保证 k 一定在 Sn 长度范围以内。

 

示例 1:

输入:n = 3, k = 1
输出:"0"
解释:S3 为 "0111001",其第 1 位为 "0" 。

示例 2:

输入:n = 4, k = 11
输出:"1"
解释:S4 为 "011100110110001",其第 11 位为 "1" 。

示例 3:

输入:n = 1, k = 1
输出:"0"

示例 4:

输入:n = 2, k = 3
输出:"1"

 

提示:

  • 1 <= n <= 20
  • 1 <= k <= 2n - 1

解法

方法一:分类讨论 + 递归

我们可以发现,对于 $S_n$,其前半部分和 $S_{n-1}$ 是一样的,而后半部分是 $S_{n-1}$ 的反转取反。因此我们可以设计一个函数 $dfs(n, k)$,表示第 $n$ 个字符串的第 $k$ 位字符。答案即为 $dfs(n, k)$。

函数 $dfs(n, k)$ 的计算过程如下:

  • 如果 $k = 1$,那么答案为 $0$;
  • 如果 $k$ 是 $2$ 的幂次方,那么答案为 $1$;
  • 如果 $k \times 2 \lt 2^n - 1$,说明 $k$ 在前半部分,答案为 $dfs(n - 1, k)$;
  • 否则,答案为 $dfs(n - 1, 2^n - k) \oplus 1$,其中 $\oplus$ 表示异或运算。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为题目给定的 $n$。

class Solution:
  def findKthBit(self, n: int, k: int) -> str:
    def dfs(n: int, k: int) -> int:
      if k == 1:
        return 0
      if (k & (k - 1)) == 0:
        return 1
      m = 1 << n
      if k * 2 < m - 1:
        return dfs(n - 1, k)
      return dfs(n - 1, m - k) ^ 1

    return str(dfs(n, k))
class Solution {
  public char findKthBit(int n, int k) {
    return (char) ('0' + dfs(n, k));
  }

  private int dfs(int n, int k) {
    if (k == 1) {
      return 0;
    }
    if ((k & (k - 1)) == 0) {
      return 1;
    }
    int m = 1 << n;
    if (k * 2 < m - 1) {
      return dfs(n - 1, k);
    }
    return dfs(n - 1, m - k) ^ 1;
  }
}
class Solution {
public:
  char findKthBit(int n, int k) {
    function<int(int, int)> dfs = [&](int n, int k) {
      if (k == 1) {
        return 0;
      }
      if ((k & (k - 1)) == 0) {
        return 1;
      }
      int m = 1 << n;
      if (k * 2 < m - 1) {
        return dfs(n - 1, k);
      }
      return dfs(n - 1, m - k) ^ 1;
    };
    return '0' + dfs(n, k);
  }
};
func findKthBit(n int, k int) byte {
  var dfs func(n, k int) int
  dfs = func(n, k int) int {
    if k == 1 {
      return 0
    }
    if k&(k-1) == 0 {
      return 1
    }
    m := 1 << n
    if k*2 < m-1 {
      return dfs(n-1, k)
    }
    return dfs(n-1, m-k) ^ 1
  }
  return byte('0' + dfs(n, k))
}
function findKthBit(n: number, k: number): string {
  const dfs = (n: number, k: number): number => {
    if (k === 1) {
      return 0;
    }
    if ((k & (k - 1)) === 0) {
      return 1;
    }
    const m = 1 << n;
    if (k * 2 < m - 1) {
      return dfs(n - 1, k);
    }
    return dfs(n - 1, m - k) ^ 1;
  };
  return dfs(n, k).toString();
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文