返回介绍

solution / 1300-1399 / 1377.Frog Position After T Seconds / README_EN

发布于 2024-06-17 01:03:20 字数 9969 浏览 0 评论 0 收藏 0

1377. Frog Position After T Seconds

中文文档

Description

Given an undirected tree consisting of n vertices numbered from 1 to n. A frog starts jumping from vertex 1. In one second, the frog jumps from its current vertex to another unvisited vertex if they are directly connected. The frog can not jump back to a visited vertex. In case the frog can jump to several vertices, it jumps randomly to one of them with the same probability. Otherwise, when the frog can not jump to any unvisited vertex, it jumps forever on the same vertex.

The edges of the undirected tree are given in the array edges, where edges[i] = [ai, bi] means that exists an edge connecting the vertices ai and bi.

_Return the probability that after t seconds the frog is on the vertex target. _Answers within 10-5 of the actual answer will be accepted.

 

Example 1:

Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
Output: 0.16666666666666666 
Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after second 1 and then jumping with 1/2 probability to vertex 4 after second 2. Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666. 

Example 2:

Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7
Output: 0.3333333333333333
Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after second 1. 

 

Constraints:

  • 1 <= n <= 100
  • edges.length == n - 1
  • edges[i].length == 2
  • 1 <= ai, bi <= n
  • 1 <= t <= 50
  • 1 <= target <= n

Solutions

Solution 1: BFS

First, based on the undirected tree edges given in the problem, we construct an adjacency list $g$, where $g[u]$ represents all adjacent vertices of vertex $u$.

Then, we define the following data structures:

  • Queue $q$, used to store the vertices and their probabilities for each round of search. Initially, $q = [(1, 1.0)]$, indicating that the probability of the frog being at vertex $1$ is $1.0$;
  • Array $vis$, used to record whether each vertex has been visited. Initially, $vis[1] = true$, and all other elements are $false$.

Next, we start the breadth-first search.

In each round of search, we take out the head element $(u, p)$ of the queue, where $u$ and $p$ represent the current vertex and its probability, respectively. The number of unvisited adjacent vertices of the current vertex $u$ is denoted as $cnt$.

  • If $u = target$, it means that the frog has reached the target vertex. At this time, we judge whether the frog reaches the target vertex in $t$ seconds, or it reaches the target vertex in less than $t$ seconds but cannot jump to other vertices (i.e., $t=0$ or $cnt=0$). If so, return $p$, otherwise return $0$.
  • If $u \neq target$, we evenly distribute the probability $p$ to all unvisited adjacent vertices of $u$, then add these vertices to the queue $q$, and mark these vertices as visited.

At the end of a round of search, we decrease $t$ by $1$, and then continue the next round of search until the queue is empty or $t \lt 0$.

class Solution:
  def frogPosition(
    self, n: int, edges: List[List[int]], t: int, target: int
  ) -> float:
    g = defaultdict(list)
    for u, v in edges:
      g[u].append(v)
      g[v].append(u)
    q = deque([(1, 1.0)])
    vis = [False] * (n + 1)
    vis[1] = True
    while q and t >= 0:
      for _ in range(len(q)):
        u, p = q.popleft()
        cnt = len(g[u]) - int(u != 1)
        if u == target:
          return p if cnt * t == 0 else 0
        for v in g[u]:
          if not vis[v]:
            vis[v] = True
            q.append((v, p / cnt))
      t -= 1
    return 0
class Solution {
  public double frogPosition(int n, int[][] edges, int t, int target) {
    List<Integer>[] g = new List[n + 1];
    Arrays.setAll(g, k -> new ArrayList<>());
    for (var e : edges) {
      int u = e[0], v = e[1];
      g[u].add(v);
      g[v].add(u);
    }
    Deque<Pair<Integer, Double>> q = new ArrayDeque<>();
    q.offer(new Pair<>(1, 1.0));
    boolean[] vis = new boolean[n + 1];
    vis[1] = true;
    for (; !q.isEmpty() && t >= 0; --t) {
      for (int k = q.size(); k > 0; --k) {
        var x = q.poll();
        int u = x.getKey();
        double p = x.getValue();
        int cnt = g[u].size() - (u == 1 ? 0 : 1);
        if (u == target) {
          return cnt * t == 0 ? p : 0;
        }
        for (int v : g[u]) {
          if (!vis[v]) {
            vis[v] = true;
            q.offer(new Pair<>(v, p / cnt));
          }
        }
      }
    }
    return 0;
  }
}
class Solution {
public:
  double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
    vector<vector<int>> g(n + 1);
    for (auto& e : edges) {
      int u = e[0], v = e[1];
      g[u].push_back(v);
      g[v].push_back(u);
    }
    queue<pair<int, double>> q{{{1, 1.0}}};
    bool vis[n + 1];
    memset(vis, false, sizeof(vis));
    vis[1] = true;
    for (; q.size() && t >= 0; --t) {
      for (int k = q.size(); k; --k) {
        auto [u, p] = q.front();
        q.pop();
        int cnt = g[u].size() - (u != 1);
        if (u == target) {
          return cnt * t == 0 ? p : 0;
        }
        for (int v : g[u]) {
          if (!vis[v]) {
            vis[v] = true;
            q.push({v, p / cnt});
          }
        }
      }
    }
    return 0;
  }
};
func frogPosition(n int, edges [][]int, t int, target int) float64 {
  g := make([][]int, n+1)
  for _, e := range edges {
    u, v := e[0], e[1]
    g[u] = append(g[u], v)
    g[v] = append(g[v], u)
  }
  type pair struct {
    u int
    p float64
  }
  q := []pair{{1, 1}}
  vis := make([]bool, n+1)
  vis[1] = true
  for ; len(q) > 0 && t >= 0; t-- {
    for k := len(q); k > 0; k-- {
      u, p := q[0].u, q[0].p
      q = q[1:]
      cnt := len(g[u])
      if u != 1 {
        cnt--
      }
      if u == target {
        if cnt*t == 0 {
          return p
        }
        return 0
      }
      for _, v := range g[u] {
        if !vis[v] {
          vis[v] = true
          q = append(q, pair{v, p / float64(cnt)})
        }
      }
    }
  }
  return 0
}
function frogPosition(n: number, edges: number[][], t: number, target: number): number {
  const g: number[][] = Array.from({ length: n + 1 }, () => []);
  for (const [u, v] of edges) {
    g[u].push(v);
    g[v].push(u);
  }
  const q: number[][] = [[1, 1]];
  const vis: boolean[] = Array.from({ length: n + 1 }, () => false);
  vis[1] = true;
  for (; q.length > 0 && t >= 0; --t) {
    for (let k = q.length; k > 0; --k) {
      const [u, p] = q.shift()!;
      const cnt = g[u].length - (u === 1 ? 0 : 1);
      if (u === target) {
        return cnt * t === 0 ? p : 0;
      }
      for (const v of g[u]) {
        if (!vis[v]) {
          vis[v] = true;
          q.push([v, p / cnt]);
        }
      }
    }
  }
  return 0;
}
public class Solution {
  public double FrogPosition(int n, int[][] edges, int t, int target) {
    List<int>[] g = new List<int>[n + 1];
    for (int i = 0; i < n + 1; i++) {
      g[i] = new List<int>();
    }
    foreach (int[] e in edges) {
      int u = e[0], v = e[1];
      g[u].Add(v);
      g[v].Add(u);
    }
    Queue<Tuple<int, double>> q = new Queue<Tuple<int, double>>();
    q.Enqueue(new Tuple<int, double>(1, 1.0));
    bool[] vis = new bool[n + 1];
    vis[1] = true;
    for (; q.Count > 0 && t >= 0; --t) {
      for (int k = q.Count; k > 0; --k) {
        (var u, var p) = q.Dequeue();
        int cnt = g[u].Count - (u == 1 ? 0 : 1);
        if (u == target) {
          return cnt * t == 0 ? p : 0;
        }
        foreach (int v in g[u]) {
          if (!vis[v]) {
            vis[v] = true;
            q.Enqueue(new Tuple<int, double>(v, p / cnt));
          }
        }
      }
    }
    return 0;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文