返回介绍

solution / 0200-0299 / 0274.H-Index / README

发布于 2024-06-17 01:04:02 字数 8289 浏览 0 评论 0 收藏 0

274. H 指数

English Version

题目描述

给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h_ _指数

根据维基百科上 h 指数的定义h 代表“高引用次数” ,一名科研人员的 h 指数 是指他(她)至少发表了 h 篇论文,并且 至少 h 篇论文被引用次数大于等于 h 。如果 h_ _有多种可能的值,h 指数 是其中最大的那个。

 

示例 1:

输入:citations = [3,0,6,1,5]
输出:3 
解释:给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 3, 0, 6, 1, 5 次。
   由于研究者有 3 篇论文每篇 至少 被引用了 3 次,其余两篇论文每篇被引用 不多于 3 次,所以她的 _h _指数是 3

示例 2:

输入:citations = [1,3,1]
输出:1

 

提示:

  • n == citations.length
  • 1 <= n <= 5000
  • 0 <= citations[i] <= 1000

解法

方法一:排序

我们可以先对数组 citations 按照元素值从大到小进行排序。然后我们从大到小枚举 $h$ 值,如果某个 $h$ 值满足 $citations[h-1] \geq h$,则说明有至少 $h$ 篇论文分别被引用了至少 $h$ 次,直接返回 $h$ 即可。如果没有找到这样的 $h$ 值,说明所有的论文都没有被引用,返回 $0$。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组 citations 的长度。

class Solution:
  def hIndex(self, citations: List[int]) -> int:
    citations.sort(reverse=True)
    for h in range(len(citations), 0, -1):
      if citations[h - 1] >= h:
        return h
    return 0
class Solution {
  public int hIndex(int[] citations) {
    Arrays.sort(citations);
    int n = citations.length;
    for (int h = n; h > 0; --h) {
      if (citations[n - h] >= h) {
        return h;
      }
    }
    return 0;
  }
}
class Solution {
public:
  int hIndex(vector<int>& citations) {
    sort(citations.rbegin(), citations.rend());
    for (int h = citations.size(); h; --h) {
      if (citations[h - 1] >= h) {
        return h;
      }
    }
    return 0;
  }
};
func hIndex(citations []int) int {
  sort.Ints(citations)
  n := len(citations)
  for h := n; h > 0; h-- {
    if citations[n-h] >= h {
      return h
    }
  }
  return 0
}
function hIndex(citations: number[]): number {
  citations.sort((a, b) => b - a);
  for (let h = citations.length; h; --h) {
    if (citations[h - 1] >= h) {
      return h;
    }
  }
  return 0;
}
impl Solution {
  #[allow(dead_code)]
  pub fn h_index(citations: Vec<i32>) -> i32 {
    let mut citations = citations;
    citations.sort_by(|&lhs, &rhs| { rhs.cmp(&lhs) });

    let n = citations.len();

    for i in (1..=n).rev() {
      if citations[i - 1] >= (i as i32) {
        return i as i32;
      }
    }

    0
  }
}

方法二:计数 + 求和

我们可以使用一个长度为 $n+1$ 的数组 $cnt$,其中 $cnt[i]$ 表示引用次数为 $i$ 的论文的篇数。我们遍历数组 citations,将引用次数大于 $n$ 的论文都当作引用次数为 $n$ 的论文,然后将每篇论文的引用次数作为下标,将 $cnt$ 中对应的元素值加 $1$。这样我们就统计出了每个引用次数对应的论文篇数。

接下来,我们从大到小枚举 $h$ 值,将 $cnt$ 中下标为 $h$ 的元素值加到变量 $s$ 中,其中 $s$ 表示引用次数大于等于 $h$ 的论文篇数。如果 $s \geq h$,说明至少有 $h$ 篇论文分别被引用了至少 $h$ 次,直接返回 $h$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 citations 的长度。

class Solution:
  def hIndex(self, citations: List[int]) -> int:
    n = len(citations)
    cnt = [0] * (n + 1)
    for x in citations:
      cnt[min(x, n)] += 1
    s = 0
    for h in range(n, -1, -1):
      s += cnt[h]
      if s >= h:
        return h
class Solution {
  public int hIndex(int[] citations) {
    int n = citations.length;
    int[] cnt = new int[n + 1];
    for (int x : citations) {
      ++cnt[Math.min(x, n)];
    }
    for (int h = n, s = 0;; --h) {
      s += cnt[h];
      if (s >= h) {
        return h;
      }
    }
  }
}
class Solution {
public:
  int hIndex(vector<int>& citations) {
    int n = citations.size();
    int cnt[n + 1];
    memset(cnt, 0, sizeof(cnt));
    for (int x : citations) {
      ++cnt[min(x, n)];
    }
    for (int h = n, s = 0;; --h) {
      s += cnt[h];
      if (s >= h) {
        return h;
      }
    }
  }
};
func hIndex(citations []int) int {
  n := len(citations)
  cnt := make([]int, n+1)
  for _, x := range citations {
    cnt[min(x, n)]++
  }
  for h, s := n, 0; ; h-- {
    s += cnt[h]
    if s >= h {
      return h
    }
  }
}
function hIndex(citations: number[]): number {
  const n: number = citations.length;
  const cnt: number[] = new Array(n + 1).fill(0);
  for (const x of citations) {
    ++cnt[Math.min(x, n)];
  }
  for (let h = n, s = 0; ; --h) {
    s += cnt[h];
    if (s >= h) {
      return h;
    }
  }
}

方法三:二分查找

我们注意到,如果存在一个 $h$ 值满足至少有 $h$ 篇论文至少被引用 $h$ 次,那么对于任意一个 $h' \lt h$,都有至少 $h'$ 篇论文至少被引用 $h'$ 次。因此我们可以使用二分查找的方法,找到最大的 $h$ 值,使得至少有 $h$ 篇论文至少被引用 $h$ 次。

我们定义二分查找的左边界 $l=0$,右边界 $r=n$。每次我们取 $mid = \lfloor \frac{l + r + 1}{2} \rfloor$,其中 $\lfloor x \rfloor$ 表示对 $x$ 向下取整。然后我们统计数组 citations 中大于等于 $mid$ 的元素的个数,记为 $s$。如果 $s \geq mid$,说明至少有 $mid$ 篇论文至少被引用 $mid$ 次,此时我们将左边界 $l$ 变为 $mid$,否则我们将右边界 $r$ 变为 $mid-1$。当左边界 $l$ 等于右边界 $r$ 时,我们找到了最大的 $h$ 值,即为 $l$ 或 $r$。

时间复杂度 $O(n \times \log n)$,其中 $n$ 是数组 citations 的长度。空间复杂度 $O(1)$。

class Solution:
  def hIndex(self, citations: List[int]) -> int:
    l, r = 0, len(citations)
    while l < r:
      mid = (l + r + 1) >> 1
      if sum(x >= mid for x in citations) >= mid:
        l = mid
      else:
        r = mid - 1
    return l
class Solution {
  public int hIndex(int[] citations) {
    int l = 0, r = citations.length;
    while (l < r) {
      int mid = (l + r + 1) >> 1;
      int s = 0;
      for (int x : citations) {
        if (x >= mid) {
          ++s;
        }
      }
      if (s >= mid) {
        l = mid;
      } else {
        r = mid - 1;
      }
    }
    return l;
  }
}
class Solution {
public:
  int hIndex(vector<int>& citations) {
    int l = 0, r = citations.size();
    while (l < r) {
      int mid = (l + r + 1) >> 1;
      int s = 0;
      for (int x : citations) {
        if (x >= mid) {
          ++s;
        }
      }
      if (s >= mid) {
        l = mid;
      } else {
        r = mid - 1;
      }
    }
    return l;
  }
};
func hIndex(citations []int) int {
  l, r := 0, len(citations)
  for l < r {
    mid := (l + r + 1) >> 1
    s := 0
    for _, x := range citations {
      if x >= mid {
        s++
      }
    }
    if s >= mid {
      l = mid
    } else {
      r = mid - 1
    }
  }
  return l
}
function hIndex(citations: number[]): number {
  let l = 0;
  let r = citations.length;
  while (l < r) {
    const mid = (l + r + 1) >> 1;
    let s = 0;
    for (const x of citations) {
      if (x >= mid) {
        ++s;
      }
    }
    if (s >= mid) {
      l = mid;
    } else {
      r = mid - 1;
    }
  }
  return l;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文