返回介绍

solution / 2300-2399 / 2336.Smallest Number in Infinite Set / README_EN

发布于 2024-06-17 01:03:07 字数 24038 浏览 0 评论 0 收藏 0

2336. Smallest Number in Infinite Set

中文文档

Description

You have a set which contains all positive integers [1, 2, 3, 4, 5, ...].

Implement the SmallestInfiniteSet class:

  • SmallestInfiniteSet() Initializes the SmallestInfiniteSet object to contain all positive integers.
  • int popSmallest() Removes and returns the smallest integer contained in the infinite set.
  • void addBack(int num) Adds a positive integer num back into the infinite set, if it is not already in the infinite set.

 

Example 1:

Input
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
Output
[null, null, 1, 2, 3, null, 1, 4, 5]

Explanation
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2);  // 2 is already in the set, so no change is made.
smallestInfiniteSet.popSmallest(); // return 1, since 1 is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 2, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 3, and remove it from the set.
smallestInfiniteSet.addBack(1);  // 1 is added back to the set.
smallestInfiniteSet.popSmallest(); // return 1, since 1 was added back to the set and
                   // is the smallest number, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 4, and remove it from the set.
smallestInfiniteSet.popSmallest(); // return 5, and remove it from the set.

 

Constraints:

  • 1 <= num <= 1000
  • At most 1000 calls will be made in total to popSmallest and addBack.

Solutions

Solution 1: Ordered Set + Simulation

We note that the range of elements in the set given by the problem is $[1, 1000]$, and the operations we need to support are:

  • popSmallest: Pop the smallest element from the set
  • addBack: Add an element back to the set

Therefore, we can use an ordered set to simulate this. Let's denote the ordered set as $s$, and the elements in the set as $s_1, s_2, \cdots, s_n$, where $n$ is the number of elements in the ordered set. In this problem, $n \le 1000$.

During initialization, we add all elements in $[1, 1000]$ to the ordered set. The time complexity is $O(n \times \log n)$.

In the popSmallest operation, we just need to pop the first element from the ordered set. The time complexity for a single operation is $O(\log n)$.

In the addBack operation, we just need to add the element back to the ordered set. The time complexity for a single operation is $O(\log n)$.

The space complexity is $O(n)$.

from sortedcontainers import SortedSet


class SmallestInfiniteSet:
  def __init__(self):
    self.s = SortedSet(range(1, 1001))

  def popSmallest(self) -> int:
    x = self.s[0]
    self.s.remove(x)
    return x

  def addBack(self, num: int) -> None:
    self.s.add(num)


# Your SmallestInfiniteSet object will be instantiated and called as such:
# obj = SmallestInfiniteSet()
# param_1 = obj.popSmallest()
# obj.addBack(num)
class SmallestInfiniteSet {
  private TreeSet<Integer> s = new TreeSet<>();

  public SmallestInfiniteSet() {
    for (int i = 1; i <= 1000; ++i) {
      s.add(i);
    }
  }

  public int popSmallest() {
    return s.pollFirst();
  }

  public void addBack(int num) {
    s.add(num);
  }
}

/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * SmallestInfiniteSet obj = new SmallestInfiniteSet();
 * int param_1 = obj.popSmallest();
 * obj.addBack(num);
 */
class SmallestInfiniteSet {
public:
  SmallestInfiniteSet() {
    for (int i = 1; i <= 1000; ++i) {
      s.insert(i);
    }
  }

  int popSmallest() {
    int x = *s.begin();
    s.erase(s.begin());
    return x;
  }

  void addBack(int num) {
    s.insert(num);
  }

private:
  set<int> s;
};

/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * SmallestInfiniteSet* obj = new SmallestInfiniteSet();
 * int param_1 = obj->popSmallest();
 * obj->addBack(num);
 */
type SmallestInfiniteSet struct {
  s *treemap.Map
}

func Constructor() SmallestInfiniteSet {
  s := treemap.NewWithIntComparator()
  for i := 1; i <= 1000; i++ {
    s.Put(i, nil)
  }
  return SmallestInfiniteSet{s}
}

func (this *SmallestInfiniteSet) PopSmallest() int {
  x, _ := this.s.Min()
  this.s.Remove(x.(int))
  return x.(int)
}

func (this *SmallestInfiniteSet) AddBack(num int) {
  this.s.Put(num, nil)
}

/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * obj := Constructor();
 * param_1 := obj.PopSmallest();
 * obj.AddBack(num);
 */
class SmallestInfiniteSet {
  private s: TreeSet<number>;

  constructor() {
    this.s = new TreeSet();
    for (let i = 1; i <= 1000; ++i) {
      this.s.add(i);
    }
  }

  popSmallest(): number {
    return this.s.shift()!;
  }

  addBack(num: number): void {
    this.s.add(num);
  }
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
  data: T;
  count: number;
  left: RBTreeNode<T> | null;
  right: RBTreeNode<T> | null;
  parent: RBTreeNode<T> | null;
  color: number;
  constructor(data: T) {
    this.data = data;
    this.left = this.right = this.parent = null;
    this.color = 0;
    this.count = 1;
  }

  sibling(): RBTreeNode<T> | null {
    if (!this.parent) return null; // sibling null if no parent
    return this.isOnLeft() ? this.parent.right : this.parent.left;
  }

  isOnLeft(): boolean {
    return this === this.parent!.left;
  }

  hasRedChild(): boolean {
    return (
      Boolean(this.left && this.left.color === 0) ||
      Boolean(this.right && this.right.color === 0)
    );
  }
}

class RBTree<T> {
  root: RBTreeNode<T> | null;
  lt: (l: T, r: T) => boolean;
  constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
    this.root = null;
    this.lt = (l: T, r: T) => compare(l, r) < 0;
  }

  rotateLeft(pt: RBTreeNode<T>): void {
    const right = pt.right!;
    pt.right = right.left;

    if (pt.right) pt.right.parent = pt;
    right.parent = pt.parent;

    if (!pt.parent) this.root = right;
    else if (pt === pt.parent.left) pt.parent.left = right;
    else pt.parent.right = right;

    right.left = pt;
    pt.parent = right;
  }

  rotateRight(pt: RBTreeNode<T>): void {
    const left = pt.left!;
    pt.left = left.right;

    if (pt.left) pt.left.parent = pt;
    left.parent = pt.parent;

    if (!pt.parent) this.root = left;
    else if (pt === pt.parent.left) pt.parent.left = left;
    else pt.parent.right = left;

    left.right = pt;
    pt.parent = left;
  }

  swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.color;
    p1.color = p2.color;
    p2.color = tmp;
  }

  swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
    const tmp = p1.data;
    p1.data = p2.data;
    p2.data = tmp;
  }

  fixAfterInsert(pt: RBTreeNode<T>): void {
    let parent = null;
    let grandParent = null;

    while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
      parent = pt.parent;
      grandParent = pt.parent.parent;

      /*  Case : A
        Parent of pt is left child of Grand-parent of pt */
      if (parent === grandParent?.left) {
        const uncle = grandParent.right;

        /* Case : 1
           The uncle of pt is also red
           Only Recoloring required */
        if (uncle && uncle.color === 0) {
          grandParent.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent;
        } else {
          /* Case : 2
             pt is right child of its parent
             Left-rotation required */
          if (pt === parent.right) {
            this.rotateLeft(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is left child of its parent
             Right-rotation required */
          this.rotateRight(grandParent);
          this.swapColor(parent!, grandParent);
          pt = parent!;
        }
      } else {
        /* Case : B
         Parent of pt is right child of Grand-parent of pt */
        const uncle = grandParent!.left;

        /*  Case : 1
          The uncle of pt is also red
          Only Recoloring required */
        if (uncle != null && uncle.color === 0) {
          grandParent!.color = 0;
          parent.color = 1;
          uncle.color = 1;
          pt = grandParent!;
        } else {
          /* Case : 2
             pt is left child of its parent
             Right-rotation required */
          if (pt === parent.left) {
            this.rotateRight(parent);
            pt = parent;
            parent = pt.parent;
          }

          /* Case : 3
             pt is right child of its parent
             Left-rotation required */
          this.rotateLeft(grandParent!);
          this.swapColor(parent!, grandParent!);
          pt = parent!;
        }
      }
    }
    this.root!.color = 1;
  }

  delete(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    node.count--;
    if (!node.count) this.deleteNode(node);
    return true;
  }

  deleteAll(val: T): boolean {
    const node = this.find(val);
    if (!node) return false;
    this.deleteNode(node);
    return true;
  }

  deleteNode(v: RBTreeNode<T>): void {
    const u = BSTreplace(v);

    // True when u and v are both black
    const uvBlack = (u === null || u.color === 1) && v.color === 1;
    const parent = v.parent!;

    if (!u) {
      // u is null therefore v is leaf
      if (v === this.root) this.root = null;
      // v is root, making root null
      else {
        if (uvBlack) {
          // u and v both black
          // v is leaf, fix double black at v
          this.fixDoubleBlack(v);
        } else {
          // u or v is red
          if (v.sibling()) {
            // sibling is not null, make it red"
            v.sibling()!.color = 0;
          }
        }
        // delete v from the tree
        if (v.isOnLeft()) parent.left = null;
        else parent.right = null;
      }
      return;
    }

    if (!v.left || !v.right) {
      // v has 1 child
      if (v === this.root) {
        // v is root, assign the value of u to v, and delete u
        v.data = u.data;
        v.left = v.right = null;
      } else {
        // Detach v from tree and move u up
        if (v.isOnLeft()) parent.left = u;
        else parent.right = u;
        u.parent = parent;
        if (uvBlack) this.fixDoubleBlack(u);
        // u and v both black, fix double black at u
        else u.color = 1; // u or v red, color u black
      }
      return;
    }

    // v has 2 children, swap data with successor and recurse
    this.swapData(u, v);
    this.deleteNode(u);

    // find node that replaces a deleted node in BST
    function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
      // when node have 2 children
      if (x.left && x.right) return successor(x.right);
      // when leaf
      if (!x.left && !x.right) return null;
      // when single child
      return x.left ?? x.right;
    }
    // find node that do not have a left child
    // in the subtree of the given node
    function successor(x: RBTreeNode<T>): RBTreeNode<T> {
      let temp = x;
      while (temp.left) temp = temp.left;
      return temp;
    }
  }

  fixDoubleBlack(x: RBTreeNode<T>): void {
    if (x === this.root) return; // Reached root

    const sibling = x.sibling();
    const parent = x.parent!;
    if (!sibling) {
      // No sibiling, double black pushed up
      this.fixDoubleBlack(parent);
    } else {
      if (sibling.color === 0) {
        // Sibling red
        parent.color = 0;
        sibling.color = 1;
        if (sibling.isOnLeft()) this.rotateRight(parent);
        // left case
        else this.rotateLeft(parent); // right case
        this.fixDoubleBlack(x);
      } else {
        // Sibling black
        if (sibling.hasRedChild()) {
          // at least 1 red children
          if (sibling.left && sibling.left.color === 0) {
            if (sibling.isOnLeft()) {
              // left left
              sibling.left.color = sibling.color;
              sibling.color = parent.color;
              this.rotateRight(parent);
            } else {
              // right left
              sibling.left.color = parent.color;
              this.rotateRight(sibling);
              this.rotateLeft(parent);
            }
          } else {
            if (sibling.isOnLeft()) {
              // left right
              sibling.right!.color = parent.color;
              this.rotateLeft(sibling);
              this.rotateRight(parent);
            } else {
              // right right
              sibling.right!.color = sibling.color;
              sibling.color = parent.color;
              this.rotateLeft(parent);
            }
          }
          parent.color = 1;
        } else {
          // 2 black children
          sibling.color = 0;
          if (parent.color === 1) this.fixDoubleBlack(parent);
          else parent.color = 1;
        }
      }
    }
  }

  insert(data: T): boolean {
    // search for a position to insert
    let parent = this.root;
    while (parent) {
      if (this.lt(data, parent.data)) {
        if (!parent.left) break;
        else parent = parent.left;
      } else if (this.lt(parent.data, data)) {
        if (!parent.right) break;
        else parent = parent.right;
      } else break;
    }

    // insert node into parent
    const node = new RBTreeNode(data);
    if (!parent) this.root = node;
    else if (this.lt(node.data, parent.data)) parent.left = node;
    else if (this.lt(parent.data, node.data)) parent.right = node;
    else {
      parent.count++;
      return false;
    }
    node.parent = parent;
    this.fixAfterInsert(node);
    return true;
  }

  find(data: T): RBTreeNode<T> | null {
    let p = this.root;
    while (p) {
      if (this.lt(data, p.data)) {
        p = p.left;
      } else if (this.lt(p.data, data)) {
        p = p.right;
      } else break;
    }
    return p ?? null;
  }

  *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.inOrder(root.left!)) yield v;
    yield root.data;
    for (const v of this.inOrder(root.right!)) yield v;
  }

  *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
    if (!root) return;
    for (const v of this.reverseInOrder(root.right!)) yield v;
    yield root.data;
    for (const v of this.reverseInOrder(root.left!)) yield v;
  }
}

class TreeSet<T = number> {
  _size: number;
  tree: RBTree<T>;
  compare: Compare<T>;
  constructor(
    collection: T[] | Compare<T> = [],
    compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
  ) {
    if (typeof collection === 'function') {
      compare = collection;
      collection = [];
    }
    this._size = 0;
    this.compare = compare;
    this.tree = new RBTree(compare);
    for (const val of collection) this.add(val);
  }

  size(): number {
    return this._size;
  }

  has(val: T): boolean {
    return !!this.tree.find(val);
  }

  add(val: T): boolean {
    const successful = this.tree.insert(val);
    this._size += successful ? 1 : 0;
    return successful;
  }

  delete(val: T): boolean {
    const deleted = this.tree.deleteAll(val);
    this._size -= deleted ? 1 : 0;
    return deleted;
  }

  ceil(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(p.data, val) >= 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  floor(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(val, p.data) >= 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  higher(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(val, p.data) < 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  lower(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(p.data, val) < 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  first(): T | undefined {
    return this.tree.inOrder().next().value;
  }

  last(): T | undefined {
    return this.tree.reverseInOrder().next().value;
  }

  shift(): T | undefined {
    const first = this.first();
    if (first === undefined) return undefined;
    this.delete(first);
    return first;
  }

  pop(): T | undefined {
    const last = this.last();
    if (last === undefined) return undefined;
    this.delete(last);
    return last;
  }

  *[Symbol.iterator](): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *keys(): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *values(): Generator<T, undefined, void> {
    for (const val of this.tree.inOrder()) yield val;
    return undefined;
  }

  /**
   * Return a generator for reverse order traversing the set
   */
  *rvalues(): Generator<T, undefined, void> {
    for (const val of this.tree.reverseInOrder()) yield val;
    return undefined;
  }
}

class TreeMultiSet<T = number> {
  _size: number;
  tree: RBTree<T>;
  compare: Compare<T>;
  constructor(
    collection: T[] | Compare<T> = [],
    compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
  ) {
    if (typeof collection === 'function') {
      compare = collection;
      collection = [];
    }
    this._size = 0;
    this.compare = compare;
    this.tree = new RBTree(compare);
    for (const val of collection) this.add(val);
  }

  size(): number {
    return this._size;
  }

  has(val: T): boolean {
    return !!this.tree.find(val);
  }

  add(val: T): boolean {
    const successful = this.tree.insert(val);
    this._size++;
    return successful;
  }

  delete(val: T): boolean {
    const successful = this.tree.delete(val);
    if (!successful) return false;
    this._size--;
    return true;
  }

  count(val: T): number {
    const node = this.tree.find(val);
    return node ? node.count : 0;
  }

  ceil(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(p.data, val) >= 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  floor(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(val, p.data) >= 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  higher(val: T): T | undefined {
    let p = this.tree.root;
    let higher = null;
    while (p) {
      if (this.compare(val, p.data) < 0) {
        higher = p;
        p = p.left;
      } else {
        p = p.right;
      }
    }
    return higher?.data;
  }

  lower(val: T): T | undefined {
    let p = this.tree.root;
    let lower = null;
    while (p) {
      if (this.compare(p.data, val) < 0) {
        lower = p;
        p = p.right;
      } else {
        p = p.left;
      }
    }
    return lower?.data;
  }

  first(): T | undefined {
    return this.tree.inOrder().next().value;
  }

  last(): T | undefined {
    return this.tree.reverseInOrder().next().value;
  }

  shift(): T | undefined {
    const first = this.first();
    if (first === undefined) return undefined;
    this.delete(first);
    return first;
  }

  pop(): T | undefined {
    const last = this.last();
    if (last === undefined) return undefined;
    this.delete(last);
    return last;
  }

  *[Symbol.iterator](): Generator<T, void, void> {
    yield* this.values();
  }

  *keys(): Generator<T, void, void> {
    for (const val of this.values()) yield val;
  }

  *values(): Generator<T, undefined, void> {
    for (const val of this.tree.inOrder()) {
      let count = this.count(val);
      while (count--) yield val;
    }
    return undefined;
  }

  /**
   * Return a generator for reverse order traversing the multi-set
   */
  *rvalues(): Generator<T, undefined, void> {
    for (const val of this.tree.reverseInOrder()) {
      let count = this.count(val);
      while (count--) yield val;
    }
    return undefined;
  }
}

/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * var obj = new SmallestInfiniteSet()
 * var param_1 = obj.popSmallest()
 * obj.addBack(num)
 */
use std::collections::BTreeSet;

struct SmallestInfiniteSet {
  s: BTreeSet<i32>,
}

impl SmallestInfiniteSet {
  fn new() -> Self {
    let mut set = BTreeSet::new();
    for i in 1..=1000 {
      set.insert(i);
    }
    SmallestInfiniteSet { s: set }
  }

  fn pop_smallest(&mut self) -> i32 {
    let x = *self.s.iter().next().unwrap();
    self.s.remove(&x);
    x
  }

  fn add_back(&mut self, num: i32) {
    self.s.insert(num);
  }
}/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * let obj = SmallestInfiniteSet::new();
 * let ret_1: i32 = obj.pop_smallest();
 * obj.add_back(num);
 */

Solution 2

class SmallestInfiniteSet {
  private pq: typeof MinPriorityQueue;
  private s: Set<number>;

  constructor() {
    this.pq = new MinPriorityQueue();
    this.s = new Set();
    for (let i = 1; i <= 1000; i++) {
      this.pq.enqueue(i, i);
      this.s.add(i);
    }
  }

  popSmallest(): number {
    const x = this.pq.dequeue()?.element;
    this.s.delete(x);
    return x;
  }

  addBack(num: number): void {
    if (!this.s.has(num)) {
      this.pq.enqueue(num, num);
      this.s.add(num);
    }
  }
}

/**
 * Your SmallestInfiniteSet object will be instantiated and called as such:
 * var obj = new SmallestInfiniteSet()
 * var param_1 = obj.popSmallest()
 * obj.addBack(num)
 */

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文