返回介绍

solution / 2200-2299 / 2281.Sum of Total Strength of Wizards / README_EN

发布于 2024-06-17 01:03:07 字数 8741 浏览 0 评论 0 收藏 0

2281. Sum of Total Strength of Wizards

中文文档

Description

As the ruler of a kingdom, you have an army of wizards at your command.

You are given a 0-indexed integer array strength, where strength[i] denotes the strength of the ith wizard. For a contiguous group of wizards (i.e. the wizards' strengths form a subarray of strength), the total strength is defined as the product of the following two values:

  • The strength of the weakest wizard in the group.
  • The total of all the individual strengths of the wizards in the group.

Return _the sum of the total strengths of all contiguous groups of wizards_. Since the answer may be very large, return it modulo 109 + 7.

A subarray is a contiguous non-empty sequence of elements within an array.

 

Example 1:

Input: strength = [1,3,1,2]
Output: 44
Explanation: The following are all the contiguous groups of wizards:
- [1] from [1,3,1,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1
- [3] from [1,3,1,2] has a total strength of min([3]) * sum([3]) = 3 * 3 = 9
- [1] from [1,3,1,2] has a total strength of min([1]) * sum([1]) = 1 * 1 = 1
- [2] from [1,3,1,2] has a total strength of min([2]) * sum([2]) = 2 * 2 = 4
- [1,3] from [1,3,1,2] has a total strength of min([1,3]) * sum([1,3]) = 1 * 4 = 4
- [3,1] from [1,3,1,2] has a total strength of min([3,1]) * sum([3,1]) = 1 * 4 = 4
- [1,2] from [1,3,1,2] has a total strength of min([1,2]) * sum([1,2]) = 1 * 3 = 3
- [1,3,1] from [1,3,1,2] has a total strength of min([1,3,1]) * sum([1,3,1]) = 1 * 5 = 5
- [3,1,2] from [1,3,1,2] has a total strength of min([3,1,2]) * sum([3,1,2]) = 1 * 6 = 6
- [1,3,1,2] from [1,3,1,2] has a total strength of min([1,3,1,2]) * sum([1,3,1,2]) = 1 * 7 = 7
The sum of all the total strengths is 1 + 9 + 1 + 4 + 4 + 4 + 3 + 5 + 6 + 7 = 44.

Example 2:

Input: strength = [5,4,6]
Output: 213
Explanation: The following are all the contiguous groups of wizards: 
- [5] from [5,4,6] has a total strength of min([5]) * sum([5]) = 5 * 5 = 25
- [4] from [5,4,6] has a total strength of min([4]) * sum([4]) = 4 * 4 = 16
- [6] from [5,4,6] has a total strength of min([6]) * sum([6]) = 6 * 6 = 36
- [5,4] from [5,4,6] has a total strength of min([5,4]) * sum([5,4]) = 4 * 9 = 36
- [4,6] from [5,4,6] has a total strength of min([4,6]) * sum([4,6]) = 4 * 10 = 40
- [5,4,6] from [5,4,6] has a total strength of min([5,4,6]) * sum([5,4,6]) = 4 * 15 = 60
The sum of all the total strengths is 25 + 16 + 36 + 36 + 40 + 60 = 213.

 

Constraints:

  • 1 <= strength.length <= 105
  • 1 <= strength[i] <= 109

Solutions

Solution 1

class Solution:
  def totalStrength(self, strength: List[int]) -> int:
    n = len(strength)
    left = [-1] * n
    right = [n] * n
    stk = []
    for i, v in enumerate(strength):
      while stk and strength[stk[-1]] >= v:
        stk.pop()
      if stk:
        left[i] = stk[-1]
      stk.append(i)
    stk = []
    for i in range(n - 1, -1, -1):
      while stk and strength[stk[-1]] > strength[i]:
        stk.pop()
      if stk:
        right[i] = stk[-1]
      stk.append(i)

    ss = list(accumulate(list(accumulate(strength, initial=0)), initial=0))
    mod = int(1e9) + 7
    ans = 0
    for i, v in enumerate(strength):
      l, r = left[i] + 1, right[i] - 1
      a = (ss[r + 2] - ss[i + 1]) * (i - l + 1)
      b = (ss[i + 1] - ss[l]) * (r - i + 1)
      ans = (ans + (a - b) * v) % mod
    return ans
class Solution {
  public int totalStrength(int[] strength) {
    int n = strength.length;
    int[] left = new int[n];
    int[] right = new int[n];
    Arrays.fill(left, -1);
    Arrays.fill(right, n);
    Deque<Integer> stk = new ArrayDeque<>();
    for (int i = 0; i < n; ++i) {
      while (!stk.isEmpty() && strength[stk.peek()] >= strength[i]) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        left[i] = stk.peek();
      }
      stk.push(i);
    }
    stk.clear();
    for (int i = n - 1; i >= 0; --i) {
      while (!stk.isEmpty() && strength[stk.peek()] > strength[i]) {
        stk.pop();
      }
      if (!stk.isEmpty()) {
        right[i] = stk.peek();
      }
      stk.push(i);
    }
    int mod = (int) 1e9 + 7;
    int[] s = new int[n + 1];
    for (int i = 0; i < n; ++i) {
      s[i + 1] = (s[i] + strength[i]) % mod;
    }
    int[] ss = new int[n + 2];
    for (int i = 0; i < n + 1; ++i) {
      ss[i + 1] = (ss[i] + s[i]) % mod;
    }
    long ans = 0;
    for (int i = 0; i < n; ++i) {
      int v = strength[i];
      int l = left[i] + 1, r = right[i] - 1;
      long a = (long) (i - l + 1) * (ss[r + 2] - ss[i + 1]);
      long b = (long) (r - i + 1) * (ss[i + 1] - ss[l]);
      ans = (ans + v * ((a - b) % mod)) % mod;
    }
    return (int) (ans + mod) % mod;
  }
}
class Solution {
public:
  int totalStrength(vector<int>& strength) {
    int n = strength.size();
    vector<int> left(n, -1);
    vector<int> right(n, n);
    stack<int> stk;
    for (int i = 0; i < n; ++i) {
      while (!stk.empty() && strength[stk.top()] >= strength[i]) stk.pop();
      if (!stk.empty()) left[i] = stk.top();
      stk.push(i);
    }
    stk = stack<int>();
    for (int i = n - 1; i >= 0; --i) {
      while (!stk.empty() && strength[stk.top()] > strength[i]) stk.pop();
      if (!stk.empty()) right[i] = stk.top();
      stk.push(i);
    }
    int mod = 1e9 + 7;
    vector<int> s(n + 1);
    for (int i = 0; i < n; ++i) s[i + 1] = (s[i] + strength[i]) % mod;
    vector<int> ss(n + 2);
    for (int i = 0; i < n + 1; ++i) ss[i + 1] = (ss[i] + s[i]) % mod;
    int ans = 0;
    for (int i = 0; i < n; ++i) {
      int v = strength[i];
      int l = left[i] + 1, r = right[i] - 1;
      long a = (long) (i - l + 1) * (ss[r + 2] - ss[i + 1]);
      long b = (long) (r - i + 1) * (ss[i + 1] - ss[l]);
      ans = (ans + v * ((a - b) % mod)) % mod;
    }
    return (int) (ans + mod) % mod;
  }
};
func totalStrength(strength []int) int {
  n := len(strength)
  left := make([]int, n)
  right := make([]int, n)
  for i := range left {
    left[i] = -1
    right[i] = n
  }
  stk := []int{}
  for i, v := range strength {
    for len(stk) > 0 && strength[stk[len(stk)-1]] >= v {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      left[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  stk = []int{}
  for i := n - 1; i >= 0; i-- {
    for len(stk) > 0 && strength[stk[len(stk)-1]] > strength[i] {
      stk = stk[:len(stk)-1]
    }
    if len(stk) > 0 {
      right[i] = stk[len(stk)-1]
    }
    stk = append(stk, i)
  }
  mod := int(1e9) + 7
  s := make([]int, n+1)
  for i, v := range strength {
    s[i+1] = (s[i] + v) % mod
  }
  ss := make([]int, n+2)
  for i, v := range s {
    ss[i+1] = (ss[i] + v) % mod
  }
  ans := 0
  for i, v := range strength {
    l, r := left[i]+1, right[i]-1
    a := (ss[r+2] - ss[i+1]) * (i - l + 1)
    b := (ss[i+1] - ss[l]) * (r - i + 1)
    ans = (ans + v*((a-b)%mod)) % mod
  }
  return (ans + mod) % mod
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文