返回介绍

lcci / 08.10.Color Fill / README_EN

发布于 2024-06-17 01:04:43 字数 8589 浏览 0 评论 0 收藏 0

08.10. Color Fill

中文文档

Description

Implement the "paint fill" function that one might see on many image editing programs. That is, given a screen (represented by a two-dimensional array of colors), a point, and a new color, fill in the surrounding area until the color changes from the original color.

Example1:


Input: 

image = [[1,1,1],[1,1,0],[1,0,1]] 

sr = 1, sc = 1, newColor = 2

Output: [[2,2,2],[2,2,0],[2,0,1]]

Explanation: 

From the center of the image (with position (sr, sc) = (1, 1)), all pixels connected 

by a path of the same color as the starting pixel are colored with the new color.

Note the bottom corner is not colored 2, because it is not 4-directionally connected

to the starting pixel.

Note:

  • The length of image and image[0] will be in the range [1, 50].
  • The given starting pixel will satisfy 0 <= sr < image.length and 0 <= sc < image[0].length.
  • The value of each color in image[i][j] and newColor will be an integer in [0, 65535].

Solutions

Solution 1: Flood Fill Algorithm

The Flood Fill algorithm is a classic algorithm used to extract several connected points from a region and distinguish them from other adjacent regions (or color them differently). It is named for its strategy, which is similar to a flood spreading from one area to all reachable areas.

The simplest implementation method is to use the recursive method of DFS, or it can be implemented iteratively using BFS.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the image, respectively.

class Solution:
  def floodFill(
    self, image: List[List[int]], sr: int, sc: int, newColor: int
  ) -> List[List[int]]:
    def dfs(i, j):
      if (
        not 0 <= i < m
        or not 0 <= j < n
        or image[i][j] != oc
        or image[i][j] == newColor
      ):
        return
      image[i][j] = newColor
      for a, b in pairwise(dirs):
        dfs(i + a, j + b)

    dirs = (-1, 0, 1, 0, -1)
    m, n = len(image), len(image[0])
    oc = image[sr][sc]
    dfs(sr, sc)
    return image
class Solution {
  private int[] dirs = {-1, 0, 1, 0, -1};
  private int[][] image;
  private int nc;
  private int oc;

  public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
    nc = newColor;
    oc = image[sr][sc];
    this.image = image;
    dfs(sr, sc);
    return image;
  }

  private void dfs(int i, int j) {
    if (i < 0 || i >= image.length || j < 0 || j >= image[0].length || image[i][j] != oc
      || image[i][j] == nc) {
      return;
    }
    image[i][j] = nc;
    for (int k = 0; k < 4; ++k) {
      dfs(i + dirs[k], j + dirs[k + 1]);
    }
  }
}
class Solution {
public:
  vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
    int m = image.size(), n = image[0].size();
    int oc = image[sr][sc];
    int dirs[5] = {-1, 0, 1, 0, -1};
    function<void(int, int)> dfs = [&](int i, int j) {
      if (i < 0 || i >= m || j < 0 || j >= n || image[i][j] != oc || image[i][j] == newColor) {
        return;
      }
      image[i][j] = newColor;
      for (int k = 0; k < 4; ++k) {
        dfs(i + dirs[k], j + dirs[k + 1]);
      }
    };
    dfs(sr, sc);
    return image;
  }
};
func floodFill(image [][]int, sr int, sc int, newColor int) [][]int {
  oc := image[sr][sc]
  m, n := len(image), len(image[0])
  dirs := []int{-1, 0, 1, 0, -1}
  var dfs func(i, j int)
  dfs = func(i, j int) {
    if i < 0 || i >= m || j < 0 || j >= n || image[i][j] != oc || image[i][j] == newColor {
      return
    }
    image[i][j] = newColor
    for k := 0; k < 4; k++ {
      dfs(i+dirs[k], j+dirs[k+1])
    }
  }
  dfs(sr, sc)
  return image
}
impl Solution {
  fn dfs(i: usize, j: usize, target: i32, new_color: i32, image: &mut Vec<Vec<i32>>) {
    if image[i][j] != target {
      return;
    }
    image[i][j] = new_color;
    if i != 0 {
      Self::dfs(i - 1, j, target, new_color, image);
    }
    if j != 0 {
      Self::dfs(i, j - 1, target, new_color, image);
    }
    if i + 1 != image.len() {
      Self::dfs(i + 1, j, target, new_color, image);
    }
    if j + 1 != image[0].len() {
      Self::dfs(i, j + 1, target, new_color, image);
    }
  }

  pub fn flood_fill(mut image: Vec<Vec<i32>>, sr: i32, sc: i32, new_color: i32) -> Vec<Vec<i32>> {
    let (sr, sc) = (sr as usize, sc as usize);
    let target = image[sr][sc];
    if target == new_color {
      return image;
    }
    Self::dfs(sr, sc, target, new_color, &mut image);
    image
  }
}

Solution 2

class Solution:
  def floodFill(
    self, image: List[List[int]], sr: int, sc: int, newColor: int
  ) -> List[List[int]]:
    if image[sr][sc] == newColor:
      return image
    q = deque([(sr, sc)])
    oc = image[sr][sc]
    image[sr][sc] = newColor
    dirs = (-1, 0, 1, 0, -1)
    while q:
      i, j = q.popleft()
      for a, b in pairwise(dirs):
        x, y = i + a, j + b
        if 0 <= x < len(image) and 0 <= y < len(image[0]) and image[x][y] == oc:
          q.append((x, y))
          image[x][y] = newColor
    return image
class Solution {
  public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
    if (image[sr][sc] == newColor) {
      return image;
    }
    Deque<int[]> q = new ArrayDeque<>();
    q.offer(new int[] {sr, sc});
    int oc = image[sr][sc];
    image[sr][sc] = newColor;
    int[] dirs = {-1, 0, 1, 0, -1};
    while (!q.isEmpty()) {
      int[] p = q.poll();
      int i = p[0], j = p[1];
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < image.length && y >= 0 && y < image[0].length
          && image[x][y] == oc) {
          q.offer(new int[] {x, y});
          image[x][y] = newColor;
        }
      }
    }
    return image;
  }
}
class Solution {
public:
  vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int newColor) {
    if (image[sr][sc] == newColor) return image;
    int oc = image[sr][sc];
    image[sr][sc] = newColor;
    queue<pair<int, int>> q;
    q.push({sr, sc});
    int dirs[5] = {-1, 0, 1, 0, -1};
    while (!q.empty()) {
      auto [a, b] = q.front();
      q.pop();
      for (int k = 0; k < 4; ++k) {
        int x = a + dirs[k];
        int y = b + dirs[k + 1];
        if (x >= 0 && x < image.size() && y >= 0 && y < image[0].size() && image[x][y] == oc) {
          q.push({x, y});
          image[x][y] = newColor;
        }
      }
    }
    return image;
  }
};
func floodFill(image [][]int, sr int, sc int, newColor int) [][]int {
  if image[sr][sc] == newColor {
    return image
  }
  oc := image[sr][sc]
  q := [][]int{[]int{sr, sc}}
  image[sr][sc] = newColor
  dirs := []int{-1, 0, 1, 0, -1}
  for len(q) > 0 {
    p := q[0]
    q = q[1:]
    for k := 0; k < 4; k++ {
      x, y := p[0]+dirs[k], p[1]+dirs[k+1]
      if x >= 0 && x < len(image) && y >= 0 && y < len(image[0]) && image[x][y] == oc {
        q = append(q, []int{x, y})
        image[x][y] = newColor
      }
    }
  }
  return image
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文