- 第一章 SystemVerilog导论
- 第二章 文本值
- 第三章 数据类型
- 第四章 数组
- 第五章 数据声明
- 第六章 属性
- 第七章 操作符与表达式
- 第八章 过程语句和控制流
- 第九章 进程
- 第十章 任务与函数
- 第十一章 类
- 第十二章 随机约束
- 第十三章 进程间的同步与通信
- 第十四章 调度语义
- 第十五章 时钟控制块
- 第十六章 程序块
- 第十七章 断言
- 第十八章 层次
- 第十九章 接口
- 第二十章 覆盖
- 第二十一章 参数
- 第二十二章 配置库
- 第二十三章 系统任务与系统函数
- 23.1 简介(一般信息)
- 23.2 确立时的typeof函数
- 23.3 typename函数
- 23.4 表达式尺寸系统函数
- 23.5 范围系统函数
- 23.6 Shortreal转换
- 23.7 数组查询系统函数
- 23.8 断言严重性系统任务
- 23.9 断言控制系统任务
- 23.10 断言系统函数
- 23.11 随机数系统函数
- 23.12 程序控制
- 23.13 覆盖系统函数
- 23.14 对Verilog-2001系统任务的增强
- 23.15 $readmemb与$readmemh
- 23.16 $writememb and $writememh
- 23.17 File format considerations for multi-dimensional unpacked arrays
- 23.18 System task arguments for multi-dimensional unpacked arrays
- 第二十四章 VCD数据
- 第二十五章 编译器指令
- 第二十六章 考虑从SystemVerilog中删除的功能
- 第二十七章 直接编程接口(DPI)
- 27.1 概述
- 27.2 Two layers of the DPI
- 27.3 Global name space of imported and exported functions
- 27.4 导入的任务和函数
- 27.5 Calling imported functions
- 27.6 Exported functions
- 27.7 Exported tasks
- 27.8 Disabling DPI tasks and functions
- 第二十八章 SystemVerilog断言API
- 第二十九章 SystemVerilog覆盖API
- 29.1 需求
- 29.2 SystemVerilog real-time coverage access
- 29.3 FSM recognition
- 29.3.1 Specifying the signal that holds the current state
- 29.3.2 Specifying the part-select that holds the current state
- 29.3.3 Specifying the concatenation that holds the current state
- 29.3.4 Specifying the signal that holds the next state
- 29.3.5 Specifying the current and next state signals in the same declaration
- 29.3.6 Specifying the possible states of the FSM
- 29.3.7 Pragmas in one-line comments
- 29.3.8 Example
- 29.4 VPI coverage extensions
- 第三十章 SystemVerilog数据读API
- 30.1 简介(一般信息)
- 30.2 需求
- 30.3 Extensions to VPI enumerations
- 30.4 VPI object type additions
- 30.5 Object model diagrams
- 30.6 Usage extensions to VPI routines
- 30.7 VPI routines added in SystemVerilog
- 30.8 Reading data
- 30.9 Optionally unloading the data
- 30.10 Reading data from multiple databases and/or different read library providers
- 30.11 VPI routines extended in SystemVerilog
- 30.12 VPI routines added in SystemVerilog
- 30.12.1 VPI reader routines
- 第三十一章 SystemVerilog VPI Object Model
- 31.1 简介(一般信息)
- 31.2 Instance
- 31.3 Interface
- 31.4 Program
- 31.5 Module (supersedes IEEE 1364-2001 26.6.1)
- 31.6 Modport
- 31.7 Interface tf decl
- 31.8 Ports (supersedes IEEE 1364-2001 26.6.5)
- 31.9 Ref Obj
- 31.9.1 Examples
- 31.10 Variables (supersedes IEEE 1364-2001 section 26.6.8)
- 31.11 Var Select (supersedes IEEE 1364-2001 26.6.8)
- 31.12 Typespec
- 31.13 Variable Drivers and Loads (supersedes IEEE 1364-2001 26.6.23)
- 31.14 Instance Arrays (supersedes IEEE 1364-2001 26.6.2)
- 31.15 Scope (supersedes IEEE 1364-2001 26.6.3)
- 31.16 IO Declaration (supersedes IEEE 1364-2001 26.6.4)
- 31.17 Clocking Block
- 31.18 Class Object Definition
- 31.19 Constraint, constraint ordering, distribution,
- 31.20 Constraint expression
- 31.21 Class Variables
- 31.22 Structure/Union
- 31.23 Named Events (supersedes IEEE 1364-2001 26.6.11)
- 31.24 Task, Function Declaration (supersedes IEEE 1364-2001 26.6.18)
- 31.25 Alias Statement
- 31.25.1 Examples
- 31.26 Frames (supersedes IEEE 1364-2001 26.6.20)
- 31.27 Threads
- 31.28 tf call (supersedes IEEE 1364-2001 26.6.19)
- 31.29 Module path, path term (supersedes IEEE 1364-2001 26.6.15)
- 31.30 Concurrent assertions
- 31.31 Property Decl
- 31.32 Property Specification
- 31.33 Multiclock Sequence Expression
- 31.34 Sequence Declaration
- 31.35 Sequence Expression
- 31.36 Attribute (supersedes IEEE 1364-2001 26.6.42)
- 31.37 Atomic Statement (supersedes IEEE 1364-2001 26.6.27)
- 31.38 If, if else, return, case, do while (supersedes IEEE 1364-2001 26.6.35, 26.6.36)
- 31.39 waits, disables, expect, foreach (supersedes IEEE 1364 26.6.38)
- 31.40 Simple expressions (supersedes IEEE 1364-2001 26.6.25)
- 31.41 Expressions (supersedes IEEE 1364-2001 26.6.26)
- 31.42 Event control (supersedes IEEE 1364-2001 26.6.30)
- 31.43 Event stmt (supersedes IEEE 1364-2001 26.6.27)
- 31.44 Process (supersedes IEEE 1364-2001 26.6.27)
- 31.45 Assignment (supersedes IEEE 1364-2001 26.6.28)
- 附录A 形式语法
- A.1 源文本
- A.2 声明
- A.3 Primitive instances
- A.4 Module, interface and generated instantiation
- A.5 UDP declaration and instantiation
- A.6 Behavioral statements
- A.6.1 Continuous assignment and net alias statements
- A.6.2 Procedural blocks and assignments
- A.6.3 Parallel and sequential blocks
- A.6.4 Statements
- A.6.5 Timing control statements
- A.6.6 Conditional statements
- A.6.7 Case statements
- A.6.8 Looping statements
- A.6.9 Subroutine call statements
- A.6.10 Assertion statements
- A.6.11 Clocking block
- A.6.12 Randsequence
- A.7 Specify section
- A.8 Expressions
- A.9 General
- A.10 Footnotes (normative)
- 附录B 关键字
- 附录C 标准包
- 附录D 链表
- 附录E DPI C-layer
- E.1 概述
- E.2 Naming conventions
- E.3 Portability
- E.4 Include files
- E.5 Semantic constraints
- E.6 Data types
- E.7 Argument passing modes
- E.8 Context tasks and functions
- E.9 Include files
- E.10 Arrays
- E.11 Open arrays
- E.11.1 Actual ranges
- E.11.2 Array querying functions
- E.11.3 Access functions
- E.11.4 Access to the actual representation
- E.11.5 Access to elements via canonical representation
- E.11.6 Access to scalar elements (bit and logic)
- E.11.7 Access to array elements of other types
- E.11.8 Example 4— two-dimensional open array
- E.11.9 Example 5 — open array
- E.11.10 Example 6 — access to packed arrays
- E.11.11 Example 7 — binary compatible calls of exported functions
- 附录F 包含文件
- 附录G 包含外部语言代码
- 附录H 并发断言的形式语义
- 附录I svvpiuser.h
- 附录J 术语表
- 附录K 参考书目
- 其他
5.7 信号别名
Verilog assign语句是单向赋值并可以结合一个延时和强度变化。为了建模一个双向短路连接,很有必要使用alias语句。一个别名列表的成员是那些共享相同物理网络的信号。下面的例子实现了总线A和总线B之间的字节顺序交换。
module byte_swap (inout wire [31:0] A, inout wire [31:0] B); alias {A[7:0],AA[15:8],AA[23:16],AA[31:24]} = B; endmodule
下面的例子从一个四字节总线中剥离最低和最高有效字节:
module byte_rip (inout wire [31:0] W, inout wire [7:0] LSB, MSB); alias W[7:0] = LSB; alias W[31:24] = MSB; endmodule
位覆盖规则与具有相同成员类型的压缩联合体的位覆盖规则相同:每一个成员应具有相同的尺寸,并且连通性独立于仿真主机。使用别名语句连接的线网必须是类型兼容的。换句话说,它们必须是相同的线网类型。例如,使用alias语句将一个wand线网连接到wor线网是非法的。这比应用到在端口上结合的线网具有更严格的规则,因为别名的作用范围是受限的并且这样的连接很可能是一个设计错误。变量和层次化引用不能使用在别名语句中。如果违背这些规则,那么会认为是一个严重错误。
相同的线网可以出现在多条别名语句中。效果是累积的。下面两个例子是等价的。在这两种情况下,low12[11:4]和high12[7:0]共享相同的线网。
module overlap(inout wire [15:0] bus16, inout wire [11:0] low12, high12); alias bus16[11:0] = low12; alias bus16[15:4] = high12; endmodule module overlap(inout wire [15:0] bus16, inout wire [11:0] low12, high12); alias bus16 = {high12, low12[3:0]}; alias high12[7:0] = low12[11:4]; endmodule
为了在规范中避免错误,SystemVerilog不允许从一个单独的变量中为它本身指定别名,也不允许多次指定一个特定的别名。上面代码的下面版本是非法的,因为高四位与低四位在两条语句中是相同的:
alias bus16 = {high12[11:8], low12}; alias bus16 = {high12, low12[3:0]};
下面的语句也是非法的,因为bus16的各位是它本身的别名:
alias bus16 = {high12, bus16[3:0]} = {bus16[15:12], low12};
在模块实例语句可以出现的任何地方都可以出现别名语句。如果在别名语句中出现了没有声明数据类型的标识符,那么就隐含成线网,并与模块实例的隐式线网遵从相同的规则。对于来自不同库的单元,下面的例子使用alias并伴随着自动的名字绑定来连接单元管脚,这样就产生一个标准宏:
module lib1_dff(Reset, Clk, Data, Q, Q_Bar); ... endmodule module lib2_dff(reset, clock, data, a, qbar); ... endmodule module lib3_dff(RST, CLK, D, Q, Q_); ... endmodule macromodule my_dff(rst, clk, d, q, q_bar); // 包装单元 input rst, clk, d; output q, q_bar; alias rst = Reset = reset = RST; alias clk = Clk = clock = CLK; alias d = data = D; alias q = Q; alias Q_ = q_bar = Q_Bar = qbar; ‘LIB_DFF my_dff (.*); // LIB_DFF可以是lib1_dff、lib2_dff或lib3_dff中的任意一个 endmodule
在一条别名语句中使用线网不会修改线网在其它语句中的语法行为。别名在确立的时候执行并且不能取消。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论