- 概览
- 安装
- 教程
- 算法接口文档
- 简易高效的并行接口
- APIS
- FREQUENTLY ASKED QUESTIONS
- EVOKIT
- 其他
- parl.algorithms.paddle.policy_gradient
- parl.algorithms.paddle.dqn
- parl.algorithms.paddle.ddpg
- parl.algorithms.paddle.ddqn
- parl.algorithms.paddle.oac
- parl.algorithms.paddle.a2c
- parl.algorithms.paddle.qmix
- parl.algorithms.paddle.td3
- parl.algorithms.paddle.sac
- parl.algorithms.paddle.ppo
- parl.algorithms.paddle.maddpg
- parl.core.paddle.model
- parl.core.paddle.algorithm
- parl.remote.remote_decorator
- parl.core.paddle.agent
- parl.remote.client
parl.Model
- class Model(name_scope=None, dtype='float32')[源代码]¶
- alias:
parl.Model
alias:parl.core.paddle.agent.Model
Model
is a base class of PARL for the neural network.A
To use theModel
is usually a policy or Q-value function, which predicts an action or an estimate according to the environmental observation.PaddlePaddle2.0
backend model, user needs to callsuper(Model, self).__init__()
at the beginning of__init__
function.Model
supports duplicating aModel
instance in a pythonic way:copied_model = copy.deepcopy(model)
Example:
import parl import paddle.nn as nn class Policy(parl.Model): def __init__(self): super(Policy, self).__init__() self.fc = nn.Linear(input_dim=100, output_dim=32) def policy(self, obs): out = self.fc(obs) return out policy = Policy() copied_policy = copy.deepcopy(policy)
- 变量:
model_id (str) – each model instance has its unique model_id.
- Public Functions:
sync_weights_to
: synchronize parameters of the current model
to another model. -
get_weights
: return a list containing all the parameters of the current model. -set_weights
: copy parameters fromset_weights()
to the model. -forward
: define the computations of a neural network. Should be overridden by all subclasses.
- get_weights()[源代码]¶
Returns a Python dict containing parameters of current model.
- 返回:
a Python dict containing the parameters of current model.
- set_weights(weights)[源代码]¶
Copy parameters from
set_weights()
to the model.- 参数:
weights (dict) – a Python dict containing the parameters.
- sync_weights_to(target_model, decay=0.0)[源代码]¶
Synchronize parameters of current model to another model.
- target_model_weights = decay * target_model_weights
(1 - decay) * current_model_weights
- 参数:
target_model (parl.Model) – an instance of
Model
that has the same neural network architecture as the current model.decay (float) – the rate of decline in copying parameters. 0 if no parameters decay when synchronizing the parameters.
Example:
import copy # create a model that has the same neural network structures. target_model = copy.deepcopy(model) # after initilizing the parameters ... model.sync_weights_to(target_mdodel)
备注
Before calling
sync_weights_to
, parameters of the model must have been initialized.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论