第零章、必读系列
- 学习算法和刷题的框架思维
- 学习数据结构和算法读什么书
- 动态规划解题框架
- 动态规划答疑篇
- 回溯算法解题框架
- 为了学会二分查找,我写了首诗
- 滑动窗口解题框架
- 双指针技巧解题框架
- Linux 的进程、线程、文件描述符是什么
- Git / SQL / 正则表达式的在线练习平台
- 动态规划设计:最长递增子序列
第一章、动态规划系列
- 编辑距离
- 经典动态规划问题:高楼扔鸡蛋
- 经典动态规划问题:高楼扔鸡蛋(进阶)
- 动态规划之子序列问题解题模板
- 动态规划之博弈问题
- 贪心算法之区间调度问题
- 动态规划之KMP字符匹配算法
- 团灭 LeetCode 股票买卖问题
- 团灭 LeetCode 打家劫舍问题
- 动态规划之四键键盘
- 动态规划之正则表达
- 最长公共子序列
第二章、数据结构系列
第三章、算法思维系列
- 算法学习之路
- 回溯算法团灭排列、组合、子集问题
- twoSum 问题的核心思想
- 常用的位操作
- 拆解复杂问题:实现计算器
- 烧饼排序
- 前缀和技巧
- 字符串乘法
- FloodFill 算法详解及应用
- 区间调度之区间合并问题
- 区间调度之区间交集问题
- 信封嵌套问题
- 几个反直觉的概率问题
- 洗牌算法
- 递归详解
第四章、高频面试系列
- 如何高效寻找素数
- 如何运用二分查找算法
- 如何高效解决接雨水问题
- 如何去除有序数组的重复元素
- 如何寻找最长回文子串
- 如何 k 个一组反转链表
- 如何判定括号合法性
- 如何寻找消失的元素
- 如何寻找缺失和重复的元素
- 如何判断回文链表
- 如何在无限序列中随机抽取元素
- 如何调度考生的座位
- Union-Find 算法详解
- Union-Find 算法应用
- 一行代码就能解决的算法题
- 二分查找高效判定子序列
第五章、计算机技术
如何判断回文链表
我们之前有两篇文章写了回文串和回文序列相关的问题。
寻找回文串的核心思想是从中心向两端扩展:
string palindrome(string& s, int l, int r) {
// 防止索引越界
while (l >= 0 && r < s.size()
&& s[l] == s[r]) {
// 向两边展开
l--; r++;
}
// 返回以 s[l] 和 s[r] 为中心的最长回文串
return s.substr(l + 1, r - l - 1);
}
因为回文串长度可能为奇数也可能是偶数,长度为奇数时只存在一个中心点,而长度为偶数时存在两个中心点,所以上面这个函数需要传入l
和r
。
而判断一个字符串是不是回文串就简单很多,不需要考虑奇偶情况,只需要「双指针技巧」,从两端向中间逼近即可:
bool isPalindrome(string s) {
int left = 0, right = s.length - 1;
while (left < right) {
if (s[left] != s[right])
return false;
left++; right--;
}
return true;
}
以上代码很好理解吧,因为回文串是对称的,所以正着读和倒着读应该是一样的,这一特点是解决回文串问题的关键。
下面扩展这一最简单的情况,来解决:如何判断一个「单链表」是不是回文。
一、判断回文单链表
输入一个单链表的头结点,判断这个链表中的数字是不是回文:
/**
* 单链表节点的定义:
* public class ListNode {
* int val;
* ListNode next;
* }
*/
boolean isPalindrome(ListNode head);
输入: 1->2->null
输出: false
输入: 1->2->2->1->null
输出: true
这道题的关键在于,单链表无法倒着遍历,无法使用双指针技巧。那么最简单的办法就是,把原始链表反转存入一条新的链表,然后比较这两条链表是否相同。关于如何反转链表,可以参见前文「递归操作链表」。
其实,借助二叉树后序遍历的思路,不需要显式反转原始链表也可以倒序遍历链表,下面来具体聊聊。
对于二叉树的几种遍历方式,我们再熟悉不过了:
void traverse(TreeNode root) {
// 前序遍历代码
traverse(root.left);
// 中序遍历代码
traverse(root.right);
// 后序遍历代码
}
在「学习数据结构的框架思维」中说过,链表兼具递归结构,树结构不过是链表的衍生。那么,链表其实也可以有前序遍历和后序遍历:
void traverse(ListNode head) {
// 前序遍历代码
traverse(head.next);
// 后序遍历代码
}
这个框架有什么指导意义呢?如果我想正序打印链表中的val
值,可以在前序遍历位置写代码;反之,如果想倒序遍历链表,就可以在后序遍历位置操作:
/* 倒序打印单链表中的元素值 */
void traverse(ListNode head) {
if (head == null) return;
traverse(head.next);
// 后序遍历代码
print(head.val);
}
说到这了,其实可以稍作修改,模仿双指针实现回文判断的功能:
// 左侧指针
ListNode left;
boolean isPalindrome(ListNode head) {
left = head;
return traverse(head);
}
boolean traverse(ListNode right) {
if (right == null) return true;
boolean res = traverse(right.next);
// 后序遍历代码
res = res && (right.val == left.val);
left = left.next;
return res;
}
这么做的核心逻辑是什么呢?实际上就是把链表节点放入一个栈,然后再拿出来,这时候元素顺序就是反的,只不过我们利用的是递归函数的堆栈而已。
当然,无论造一条反转链表还是利用后续遍历,算法的时间和空间复杂度都是 O(N)。下面我们想想,能不能不用额外的空间,解决这个问题呢?
二、优化空间复杂度
更好的思路是这样的:
1、先通过「双指针技巧」中的快慢指针来找到链表的中点:
ListNode slow, fast;
slow = fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
// slow 指针现在指向链表中点
2、如果fast
指针没有指向null
,说明链表长度为奇数,slow
还要再前进一步:
if (fast != null)
slow = slow.next;
3、从slow
开始反转后面的链表,现在就可以开始比较回文串了:
ListNode left = head;
ListNode right = reverse(slow);
while (right != null) {
if (left.val != right.val)
return false;
left = left.next;
right = right.next;
}
return true;
至此,把上面 3 段代码合在一起就高效地解决这个问题了,其中reverse
函数很容易实现:
ListNode reverse(ListNode head) {
ListNode pre = null, cur = head;
while (cur != null) {
ListNode next = cur.next;
cur.next = pre;
pre = cur;
cur = next;
}
return pre;
}
算法总体的时间复杂度 O(N),空间复杂度 O(1),已经是最优的了。
我知道肯定有读者会问:这种解法虽然高效,但破坏了输入链表的原始结构,能不能避免这个瑕疵呢?
其实这个问题很好解决,关键在于得到p, q
这两个指针位置:
这样,只要在函数 return 之前加一段代码即可恢复原先链表顺序:
p.next = reverse(q);
篇幅所限,我就不写了,读者可以自己尝试一下。
三、最后总结
首先,寻找回文串是从中间向两端扩展,判断回文串是从两端向中间收缩。对于单链表,无法直接倒序遍历,可以造一条新的反转链表,可以利用链表的后序遍历,也可以用栈结构倒序处理单链表。
具体到回文链表的判断问题,由于回文的特殊性,可以不完全反转链表,而是仅仅反转部分链表,将空间复杂度降到 O(1)。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论