- 简介
- 一、基础知识篇
- 二、工具篇
- 三、分类专题篇
- 四、技巧篇
- 五、高级篇
- 六、题解篇
- 6.1 Pwn
- 6.1.1 pwn HCTF2016 brop
- 6.1.2 pwn NJCTF2017 pingme
- 6.1.3 pwn XDCTF2015 pwn200
- 6.1.4 pwn BackdoorCTF2017 Fun-Signals
- 6.1.5 pwn GreHackCTF2017 beerfighter
- 6.1.6 pwn DefconCTF2015 fuckup
- 6.1.7 pwn 0CTF2015 freenote
- 6.1.8 pwn DCTF2017 Flex
- 6.1.9 pwn RHme3 Exploitation
- 6.1.10 pwn 0CTF2017 BabyHeap2017
- 6.1.11 pwn 9447CTF2015 Search-Engine
- 6.1.12 pwn N1CTF2018 vote
- 6.1.13 pwn 34C3CTF2017 readme_revenge
- 6.1.14 pwn 32C3CTF2015 readme
- 6.1.15 pwn 34C3CTF2017 SimpleGC
- 6.1.16 pwn HITBCTF2017 1000levels
- 6.1.17 pwn SECCONCTF2016 jmper
- 6.1.18 pwn HITBCTF2017 Sentosa
- 6.1.19 pwn HITBCTF2018 gundam
- 6.1.20 pwn 33C3CTF2016 babyfengshui
- 6.1.21 pwn HITCONCTF2016 Secret_Holder
- 6.1.22 pwn HITCONCTF2016 Sleepy_Holder
- 6.1.23 pwn BCTF2016 bcloud
- 6.1.24 pwn HITCONCTF2016 HouseofOrange
- 6.1.25 pwn HCTF2017 babyprintf
- 6.1.26 pwn 34C3CTF2017 300
- 6.1.27 pwn SECCONCTF2016 tinypad
- 6.1.28 pwn ASISCTF2016 b00ks
- 6.1.29 pwn Insomni'hackteaserCTF2017 TheGreatEscapepart-3
- 6.1.30 pwn HITCONCTF2017 Ghostinthe_heap
- 6.1.31 pwn HITBCTF2018 mutepig
- 6.1.32 pwn SECCONCTF2017 vmnofun
- 6.1.33 pwn 34C3CTF2017 LFA
- 6.1.34 pwn N1CTF2018 memsafety
- 6.1.35 pwn 0CTF2018 heapstorm2
- 6.1.36 pwn NJCTF2017 messager
- 6.1.37 pwn sixstarctf2018 babystack
- 6.1.38 pwn HITCONCMT2017 pwn200
- 6.1.39 pwn BCTF2018 houseofAtum
- 6.1.40 pwn LCTF2016 pwn200
- 6.1.41 pwn PlaidCTF2015 PlaidDB
- 6.1.42 pwn hacklu2015 bookstore
- 6.1.43 pwn 0CTF2018 babyheap
- 6.1.44 pwn ASIS2017 start_hard
- 6.1.45 pwn LCTF2016 pwn100
- 6.2 Reverse
- 6.3 Web
- 6.1 Pwn
- 七、实战篇
- 7.1 CVE
- 7.1.1 CVE-2017-11543 tcpdump sliplink_print 栈溢出漏洞
- 7.1.2 CVE-2015-0235 glibc _nsshostnamedigitsdots 堆溢出漏洞
- 7.1.3 CVE-2016-4971 wget 任意文件上传漏洞
- 7.1.4 CVE-2017-13089 wget skipshortbody 栈溢出漏洞
- 7.1.5 CVE–2018-1000001 glibc realpath 缓冲区下溢漏洞
- 7.1.6 CVE-2017-9430 DNSTracer 栈溢出漏洞
- 7.1.7 CVE-2018-6323 GNU binutils elfobjectp 整型溢出漏洞
- 7.1.8 CVE-2010-2883 Adobe CoolType SING 表栈溢出漏洞
- 7.1.9 CVE-2010-3333 Microsoft Word RTF pFragments 栈溢出漏洞
- 7.1 CVE
- 八、学术篇
- 8.1 The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)
- 8.2 Return-Oriented Programming without Returns
- 8.3 Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms
- 8.4 ROPdefender: A Detection Tool to Defend Against Return-Oriented Programming Attacks
- 8.5 Data-Oriented Programming: On the Expressiveness of Non-Control Data Attacks
- 8.7 What Cannot Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses
- 8.9 Symbolic Execution for Software Testing: Three Decades Later
- 8.10 AEG: Automatic Exploit Generation
- 8.11 Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Software
- 8.13 New Frontiers of Reverse Engineering
- 8.14 Who Allocated My Memory? Detecting Custom Memory Allocators in C Binaries
- 8.21 Micro-Virtualization Memory Tracing to Detect and Prevent Spraying Attacks
- 8.22 Practical Memory Checking With Dr. Memory
- 8.23 Evaluating the Effectiveness of Current Anti-ROP Defenses
- 8.24 How to Make ASLR Win the Clone Wars: Runtime Re-Randomization
- 8.25 (State of) The Art of War: Offensive Techniques in Binary Analysis
- 8.26 Driller: Augmenting Fuzzing Through Selective Symbolic Execution
- 8.27 Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware
- 8.28 Cross-Architecture Bug Search in Binary Executables
- 8.29 Dynamic Hooks: Hiding Control Flow Changes within Non-Control Data
- 8.30 Preventing brute force attacks against stack canary protection on networking servers
- 8.33 Under-Constrained Symbolic Execution: Correctness Checking for Real Code
- 8.34 Enhancing Symbolic Execution with Veritesting
- 8.38 TaintEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking
- 8.39 DART: Directed Automated Random Testing
- 8.40 EXE: Automatically Generating Inputs of Death
- 8.41 IntPatch: Automatically Fix Integer-Overflow-to-Buffer-Overflow Vulnerability at Compile-Time
- 8.42 Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software
- 8.43 DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation
- 8.44 Superset Disassembly: Statically Rewriting x86 Binaries Without Heuristics
- 8.45 Ramblr: Making Reassembly Great Again
- 8.46 FreeGuard: A Faster Secure Heap Allocator
- 8.48 Reassembleable Disassembling
- 九、附录
1.4.4 常见 Web 服务器基础
由于涉及到 Web 服务器和应用服务器的差别问题,这里着重介绍三款使用广泛的 Web 服务器。
当客户端按照 HTTP 协议发送了请求,服务端也写好了处理请求的逻辑代码,这时就需要一个中间人来接收请求,解析请求,并将请求放入后端代码中执行,最终将执行结果返回的页面传递给客户端。另外,我们还要保证整个服务能同时被大规模的人群使用,Web 服务器就充当了这样的角色。
Apache HTTP Server
Apache HTTP Server 以稳定、安全以及对 PHP 的高效支持而被广泛用于 PHP 语言中,WAMP 或者 LAMP 就是它们组合的简称,即 Windows 或者 Linux 下的 Apache2+Mysql+PHP。
安装 Apache
Windows 下推荐直接安装 WAMP 环境。
Ubuntu 下可以依次使用命令安装,需要注意的是不同的系统版本对 PHP 的支持情况不同,这里以 ubuntu 16.04 为例。
sudo apt-get install apache2
sudo apt-get install mysql-server mysql-client
sudo apt-get install php7.0
sudo apt-get install libapache2-mod-php7.0
sudo apt-get install php7.0-mysql
service apache2 restart
service mysql restart
组件
Apache 服务器拥有强大的组件系统,这些组件补充了包括认证、日志记录、命令交互、语言支持等复杂功能,同样在 Apache 的发展过程中,许多组件都出现过漏洞,包括资源溢出、拒绝服务、远程命令执行等。
关于 Apache 的组件历史漏洞可以在 https://www.exploit-db.com 中进行查看
文件后缀解析特性
Apache 支持多后缀解析,对文件的后缀解析采用从右向左的顺序,如果遇到无法识别的后缀名就会依次遍历剩下的后缀名。
同时,还可以在配置文件如下选项中增加其他后缀名:
<IfModule mime_module>
更多的后缀名支持可以查看 mime.type
文件。
Nginx
Nginx 的特点在于它的负载均衡和反向代理功能,在访问规模庞大的站点上通常使用 Nginx 作为服务器。同样,Nginx 也和 Mysql、PHP 一同构成了 WNMP 和 LNMP 环境。和 Apache 默认将 PHP 作为模块加载不同的是,Nginx 通过 CGI 来调用 PHP。
安装 Nginx
Windows 由于没有官方网站的 WNMP,大家可以选择 Github 上的 WNMP 项目或者其他用户打包好的安装环境进行安装。
Ubuntu 这里以 FPM 配置为例:
$ sudo apt-get install nginx
$ sudo apt-get install php7.0
$ sudo apt-get install php7.0-fpm
打开 vim /etc/nginx/sites-available/default
修改配置
server {
......
......
location ~ \.php$ {
include snippets/fastcgi-php.conf;
fastcgi_pass unix:/run/php/php7.0-fpm.sock;
}
......
......
}
$ service nginx restart
$ sudo apt-get install mysql-server php7.0-mysql
$ sudo apt-get install mysql-client
文件后缀解析
由于 Nginx 对 CGI 的使用更加广泛,所以 PHP 在 CGI 的一些解析特性放到 Nginx 这里来讲解,PHP 具有对文件路径进行修正的特性,使用如下配置参数:
cgi.fix_pathinfo = 1
当使用如下的 URL 来访问一个存在的 1.jpg 资源时,Nginx 认为这是一个 PHP 资源,于是会将该资源交给 PHP 来处理,而 PHP 此时会发现 1.php 不存在,通过修正路径,PHP 会将存在的 1.jpg 作为 PHP 来执行。
http://xxx/xxx/1.jpg/1.php
相似的绕过方式还有以下几种方式:
http://xxx/xxx/1.jpg%00.php
http://xxx/xxx/1.jpg \0.php
但是,新版本的 PHP 引入了新的配置项 “security.limit_extensions” 来限制可执行的文件后缀,以此来弥补 CGI 文件后缀解析的不足。
IIS
IIS 被广泛内置于 Windows 的多个操作系统中,只需要在控制面板中的 Windows 服务下打开 IIS 服务,即可进行配置操作。作为微软的 Web 服务器,它对 .net 的程序应用支持最好,同时也支持以 CGI 的方式加载其他语言。
安装 IIS
IIS 通常只能运行在 Windows 系统上,以 Windows 10 为例,打开控制面板,依次选择程序-启用或关闭 Windows 功能,勾选打开 Internet Information Services 服务。
启动成功后,在 “此电脑” 选项上点击右键,打开 “管理” 选项,选择 “服务和应用程序” 即可看到 IIS 的相关配置。
IIS 解析特性
- IIS 短文件名
为了兼容 16 位 MS-DOS 程序, Windows 会为文件名较长的文件生成对应的短文件名,如下所示:
利用这种文件机制,我们可以在 IIS 和 .net 环境下进行短文件名爆破。
- IIS 6.0 解析特性
IIS 6.0 解析文件时会忽略分号后的字符串,因此 1.asp;2.jpg
将会被解析为 1.asp
。
- IIS 也存在类似于 Nginx 的 CGI 解析特性
如何获取 Web 服务指纹
比赛中的信息获取往往十分重要,确定 Web 服务器指纹对于下一步的对策很重要。
HTTP 头识别
许多 Web 服务器都会在返回给用户的 HTTP 头中告知自己的服务器名称和版本。举例列出一些真实存在的包含服务器信息的 HTTP 头:
Server: nginx
Server: Tengine
Server: openresty/1.11.2.4
Server: Microsoft-IIS/8.0
Server: Apache/2.4.26 (Unix) OpenSSL/1.0.2l PHP/5.6.31 mod_perl/2.0.8-dev Perl/v5.16.3
X-Powered-By: PHP/5.5.25
X-Powered-By: ASP.NET
文件扩展名
URL 中使用的文件扩展名也能够揭示相关的服务平台和编程语言,如:
asp
:Microsoft Active Server Pagesaspx
:Microsoft ASP.NETjsp
:Java Server Pagesphp
:PHP
目录名称
一些子目录名称也常常表示应用程序所使用的相关技术。
会话令牌
许多服务会默认生成会话令牌,通过读取 cookie 中的会话令牌可以判断所使用的技术。如:
JSESSIONID
:JAVAASPSESSIONID
:IISASP.NET_SessionId
:ASP.NETPHPSESSID
:PHP
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论