返回介绍

solution / 0200-0299 / 0240.Search a 2D Matrix II / README_EN

发布于 2024-06-17 01:04:02 字数 7758 浏览 0 评论 0 收藏 0

240. Search a 2D Matrix II

中文文档

Description

Write an efficient algorithm that searches for a value target in an m x n integer matrix matrix. This matrix has the following properties:

  • Integers in each row are sorted in ascending from left to right.
  • Integers in each column are sorted in ascending from top to bottom.

 

Example 1:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
Output: true

Example 2:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
Output: false

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -109 <= matrix[i][j] <= 109
  • All the integers in each row are sorted in ascending order.
  • All the integers in each column are sorted in ascending order.
  • -109 <= target <= 109

Solutions

Solution 1

class Solution:
  def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
    for row in matrix:
      j = bisect_left(row, target)
      if j < len(matrix[0]) and row[j] == target:
        return True
    return False
class Solution {
  public boolean searchMatrix(int[][] matrix, int target) {
    for (var row : matrix) {
      int j = Arrays.binarySearch(row, target);
      if (j >= 0) {
        return true;
      }
    }
    return false;
  }
}
class Solution {
public:
  bool searchMatrix(vector<vector<int>>& matrix, int target) {
    for (auto& row : matrix) {
      int j = lower_bound(row.begin(), row.end(), target) - row.begin();
      if (j < matrix[0].size() && row[j] == target) {
        return true;
      }
    }
    return false;
  }
};
func searchMatrix(matrix [][]int, target int) bool {
  for _, row := range matrix {
    j := sort.SearchInts(row, target)
    if j < len(matrix[0]) && row[j] == target {
      return true
    }
  }
  return false
}
function searchMatrix(matrix: number[][], target: number): boolean {
  const n = matrix[0].length;
  for (const row of matrix) {
    let left = 0,
      right = n;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (row[mid] >= target) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    if (left != n && row[left] == target) {
      return true;
    }
  }
  return false;
}
use std::cmp::Ordering;

impl Solution {
  pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {
    let m = matrix.len();
    let n = matrix[0].len();
    let mut i = 0;
    let mut j = n;
    while i < m && j > 0 {
      match target.cmp(&matrix[i][j - 1]) {
        Ordering::Less => {
          j -= 1;
        }
        Ordering::Greater => {
          i += 1;
        }
        Ordering::Equal => {
          return true;
        }
      }
    }
    false
  }
}
/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function (matrix, target) {
  const n = matrix[0].length;
  for (const row of matrix) {
    let left = 0,
      right = n;
    while (left < right) {
      const mid = (left + right) >> 1;
      if (row[mid] >= target) {
        right = mid;
      } else {
        left = mid + 1;
      }
    }
    if (left != n && row[left] == target) {
      return true;
    }
  }
  return false;
};
public class Solution {
  public bool SearchMatrix(int[][] matrix, int target) {
    foreach (int[] row in matrix) {
      int j = Array.BinarySearch(row, target);
      if (j >= 0) {
        return true;
      }
    }
    return false;
  }
}

Solution 2

class Solution:
  def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
    m, n = len(matrix), len(matrix[0])
    i, j = m - 1, 0
    while i >= 0 and j < n:
      if matrix[i][j] == target:
        return True
      if matrix[i][j] > target:
        i -= 1
      else:
        j += 1
    return False
class Solution {
  public boolean searchMatrix(int[][] matrix, int target) {
    int m = matrix.length, n = matrix[0].length;
    int i = m - 1, j = 0;
    while (i >= 0 && j < n) {
      if (matrix[i][j] == target) {
        return true;
      }
      if (matrix[i][j] > target) {
        --i;
      } else {
        ++j;
      }
    }
    return false;
  }
}
class Solution {
public:
  bool searchMatrix(vector<vector<int>>& matrix, int target) {
    int m = matrix.size(), n = matrix[0].size();
    int i = m - 1, j = 0;
    while (i >= 0 && j < n) {
      if (matrix[i][j] == target) {
        return true;
      }
      if (matrix[i][j] > target) {
        --i;
      } else {
        ++j;
      }
    }
    return false;
  }
};
func searchMatrix(matrix [][]int, target int) bool {
  m, n := len(matrix), len(matrix[0])
  i, j := m-1, 0
  for i >= 0 && j < n {
    if matrix[i][j] == target {
      return true
    }
    if matrix[i][j] > target {
      i--
    } else {
      j++
    }
  }
  return false
}
function searchMatrix(matrix: number[][], target: number): boolean {
  let m = matrix.length,
    n = matrix[0].length;
  let i = m - 1,
    j = 0;
  while (i >= 0 && j < n) {
    let cur = matrix[i][j];
    if (cur == target) return true;
    if (cur > target) {
      --i;
    } else {
      ++j;
    }
  }
  return false;
}
public class Solution {
  public bool SearchMatrix(int[][] matrix, int target) {
    int m = matrix.Length, n = matrix[0].Length;
    int i = m - 1, j = 0;
    while (i >= 0 && j < n) {
      if (matrix[i][j] == target) {
        return true;
      }
      if (matrix[i][j] > target) {
        --i;
      } else {
        ++j;
      }
    }
    return false;
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文