返回介绍

solution / 0500-0599 / 0505.The Maze II / README_EN

发布于 2024-06-17 01:04:00 字数 8516 浏览 0 评论 0 收藏 0

505. The Maze II

中文文档

Description

There is a ball in a maze with empty spaces (represented as 0) and walls (represented as 1). The ball can go through the empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the m x n maze, the ball's start position and the destination, where start = [startrow, startcol] and destination = [destinationrow, destinationcol], return _the shortest distance for the ball to stop at the destination_. If the ball cannot stop at destination, return -1.

The distance is the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included).

You may assume that the borders of the maze are all walls (see examples).

 

Example 1:

Input: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [4,4]
Output: 12
Explanation: One possible way is : left -> down -> left -> down -> right -> down -> right.
The length of the path is 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12.

Example 2:

Input: maze = [[0,0,1,0,0],[0,0,0,0,0],[0,0,0,1,0],[1,1,0,1,1],[0,0,0,0,0]], start = [0,4], destination = [3,2]
Output: -1
Explanation: There is no way for the ball to stop at the destination. Notice that you can pass through the destination but you cannot stop there.

Example 3:

Input: maze = [[0,0,0,0,0],[1,1,0,0,1],[0,0,0,0,0],[0,1,0,0,1],[0,1,0,0,0]], start = [4,3], destination = [0,1]
Output: -1

 

Constraints:

  • m == maze.length
  • n == maze[i].length
  • 1 <= m, n <= 100
  • maze[i][j] is 0 or 1.
  • start.length == 2
  • destination.length == 2
  • 0 <= startrow, destinationrow < m
  • 0 <= startcol, destinationcol < n
  • Both the ball and the destination exist in an empty space, and they will not be in the same position initially.
  • The maze contains at least 2 empty spaces.

Solutions

Solution 1

class Solution:
  def shortestDistance(
    self, maze: List[List[int]], start: List[int], destination: List[int]
  ) -> int:
    m, n = len(maze), len(maze[0])
    dirs = (-1, 0, 1, 0, -1)
    si, sj = start
    di, dj = destination
    q = deque([(si, sj)])
    dist = [[inf] * n for _ in range(m)]
    dist[si][sj] = 0
    while q:
      i, j = q.popleft()
      for a, b in pairwise(dirs):
        x, y, k = i, j, dist[i][j]
        while 0 <= x + a < m and 0 <= y + b < n and maze[x + a][y + b] == 0:
          x, y, k = x + a, y + b, k + 1
        if k < dist[x][y]:
          dist[x][y] = k
          q.append((x, y))
    return -1 if dist[di][dj] == inf else dist[di][dj]
class Solution {
  public int shortestDistance(int[][] maze, int[] start, int[] destination) {
    int m = maze.length, n = maze[0].length;
    final int inf = 1 << 30;
    int[][] dist = new int[m][n];
    for (var row : dist) {
      Arrays.fill(row, inf);
    }
    int si = start[0], sj = start[1];
    int di = destination[0], dj = destination[1];
    dist[si][sj] = 0;
    Deque<int[]> q = new ArrayDeque<>();
    q.offer(new int[] {si, sj});
    int[] dirs = {-1, 0, 1, 0, -1};
    while (!q.isEmpty()) {
      var p = q.poll();
      int i = p[0], j = p[1];
      for (int d = 0; d < 4; ++d) {
        int x = i, y = j, k = dist[i][j];
        int a = dirs[d], b = dirs[d + 1];
        while (
          x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0) {
          x += a;
          y += b;
          ++k;
        }
        if (k < dist[x][y]) {
          dist[x][y] = k;
          q.offer(new int[] {x, y});
        }
      }
    }
    return dist[di][dj] == inf ? -1 : dist[di][dj];
  }
}
class Solution {
public:
  int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
    int m = maze.size(), n = maze[0].size();
    int dist[m][n];
    memset(dist, 0x3f, sizeof(dist));
    int si = start[0], sj = start[1];
    int di = destination[0], dj = destination[1];
    dist[si][sj] = 0;
    queue<pair<int, int>> q;
    q.emplace(si, sj);
    int dirs[5] = {-1, 0, 1, 0, -1};
    while (!q.empty()) {
      auto [i, j] = q.front();
      q.pop();
      for (int d = 0; d < 4; ++d) {
        int x = i, y = j, k = dist[i][j];
        int a = dirs[d], b = dirs[d + 1];
        while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] == 0) {
          x += a;
          y += b;
          ++k;
        }
        if (k < dist[x][y]) {
          dist[x][y] = k;
          q.emplace(x, y);
        }
      }
    }
    return dist[di][dj] == 0x3f3f3f3f ? -1 : dist[di][dj];
  }
};
func shortestDistance(maze [][]int, start []int, destination []int) int {
  m, n := len(maze), len(maze[0])
  dist := make([][]int, m)
  const inf = 1 << 30
  for i := range dist {
    dist[i] = make([]int, n)
    for j := range dist[i] {
      dist[i][j] = inf
    }
  }
  dist[start[0]][start[1]] = 0
  q := [][]int{start}
  dirs := [5]int{-1, 0, 1, 0, -1}
  for len(q) > 0 {
    p := q[0]
    q = q[1:]
    i, j := p[0], p[1]
    for d := 0; d < 4; d++ {
      x, y, k := i, j, dist[i][j]
      a, b := dirs[d], dirs[d+1]
      for x+a >= 0 && x+a < m && y+b >= 0 && y+b < n && maze[x+a][y+b] == 0 {
        x, y, k = x+a, y+b, k+1
      }
      if k < dist[x][y] {
        dist[x][y] = k
        q = append(q, []int{x, y})
      }
    }
  }
  di, dj := destination[0], destination[1]
  if dist[di][dj] == inf {
    return -1
  }
  return dist[di][dj]
}
function shortestDistance(maze: number[][], start: number[], destination: number[]): number {
  const m = maze.length;
  const n = maze[0].length;
  const dist: number[][] = Array.from({ length: m }, () =>
    Array.from({ length: n }, () => Infinity),
  );
  const [si, sj] = start;
  const [di, dj] = destination;
  dist[si][sj] = 0;
  const q: number[][] = [[si, sj]];
  const dirs = [-1, 0, 1, 0, -1];
  while (q.length) {
    const [i, j] = q.shift()!;
    for (let d = 0; d < 4; ++d) {
      let [x, y, k] = [i, j, dist[i][j]];
      const [a, b] = [dirs[d], dirs[d + 1]];
      while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && maze[x + a][y + b] === 0) {
        x += a;
        y += b;
        ++k;
      }
      if (k < dist[x][y]) {
        dist[x][y] = k;
        q.push([x, y]);
      }
    }
  }
  return dist[di][dj] === Infinity ? -1 : dist[di][dj];
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文