文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
十五、MOG 背景减弱
在这个 Python OpenCV 教程中,我们将要讨论如何通过检测运动来减弱图像的背景。 这将要求我们回顾视频的使用,或者有两个图像,一个没有你想要追踪的人物/物体,另一个拥有人物/物体。 如果你希望,你可以使用你的摄像头,或者使用如下的视频:
这里的代码实际上很简单,就是我们现在知道的:
import numpy as np
import cv2
cap = cv2.VideoCapture('people-walking.mp4')
fgbg = cv2.createBackgroundSubtractorMOG2()
while(1):
ret, frame = cap.read()
fgmask = fgbg.apply(frame)
cv2.imshow('fgmask',frame)
cv2.imshow('frame',fgmask)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
结果:
https://pythonprogramming.net/static/images/opencv/opencv-python-foreground.mp4
这里的想法是从静态背景中提取移动的前景。 你也可以使用这个来比较两个相似的图像,并立即提取它们之间的差异。
在我们的例子中,我们可以看到我们确实已经检测到了一些人,但是我们确实有一些“噪音”,噪音实际上是树叶在周围的风中移动了一下。 只要我们知道一种减少噪音的方法。 等一下! 我们的确知道! 一个疯狂的挑战已经出现了你面前!
接下来的教程开始让我们远离滤镜或变换的应用,并让我们使用 Haar Cascades 来检测一般对象,例如面部检测等等。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论