- 1. 学习如何在你的电脑上配置OpenCV-Python环境!
- 1.1 开始了解OpenCV-Python
- 1.2 在 Windows 下安装 OpenCV-Python
- 1.3 在 Fedora 环境下安装 OpenCV-Python
- 1.4 在 Debian(Ubuntu)中配置 OpenCV-Python
- 1.5 在Docker中安装OpenCV-Python
- 1.6 在树莓派配置OpenCV-Python
- 2. OpenCV中的GUI功能
- 2.1 开始使用图像
- 2.2 开始使用视频
- 2.3 OpenCV 中的绘图函数
- 2.4 以鼠标为画笔
- 2.5 用滑块控制条做调色板
- 3. OpenCV中的GUI功能
- 3.1 图片基本操作
- 3.2 图像算术操作
- 3.3 性能评估与改进技巧
- 4. OpenCV中的图像处理
- 4.1 更换颜色空间
- 4.2 对图像进行几何变换
- 4.3 图像二值化处理
- 4.4 平滑图像
- 4.5 形态学转换
- 4.6 图像梯度
- 4.7 Canny边缘检测
- 4.8 图像金字塔
- 4.9.1 直方图:查找,绘制,分析
- 4.9.2 直方图均衡化
- 4.9.3 二维直方图
- 4.9.4 直方图反投影
- 4.10 OpenCV中的图像变换
- 4.10.1 傅立叶变换
- 4.11 模板匹配
- 4.12 霍夫直线变换
- 4.13 霍夫圆变换
- 4.14 基于分水岭算法的图像分割
- 4.14 使用 GrabCut 算法交互式前景提取
- 5. 特征检测和描述符
- 5.1 理解特征
- 5.2 Harris 角点检测
- 5.3 Shi-Tomasi 角点检测 & 适合用来跟踪的特征
- 5.4 介绍SIFT(尺度不变特征转换)
- 5.5 介绍SURF(加速稳健特征)
- 5.6 角点检测的FAST算法
- 5.7 BRIEF特征点描述算法
- 5.8 ORB 特征描述符(Oriented FAST and Rotated BRIEF)
- 5.9 特征匹配
- 5.10 特征匹配和使用单应性匹配来搜索物体
- 6. 视频分析
- 6.1 Meanshift和Camshift
- 6.2 光流
- 6.3 背景分割
- 7. 相机校准和3D重建
- 7.1 相机校准
- 7.2 姿势估计
- 7.3 极线几何
- 7.4 来自立体图像的深度图
- 8. 机器学习
- 8.1 K-最近邻算法
- 8.1.1 了解k-最近邻算法
- 8.1.2 使用kNN进行手写字符的OCR
- 8.2 支持向量机(SVM)
- 8.2.1 理解SVM
- 8.2.2 使用SVM的手写数据的OCR
- 8.3 K-Means聚类
- 8.3.1 理解 K-Means 聚类
- 8.3.2 OpenCV中的K-Means聚类
- 9. 计算摄影学
- 9.1 图像去噪
- 9.2 图像修复
- 9.3 高动态范围(HDR)
- 10. 目标检测
- 10.1 使用 Haar Cascades 的面部识别
- 11. OpenCV-Python 绑定
- 11.1 OpenCV-Python绑定如何工作?
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
2.4 以鼠标为画笔
目标
- 学会如何使用 OpenCV 处理鼠标事件
- 你会学到这些函数:
cv2.setMouseCallback()
简单的展示
在这里,我们创建一个简单的应用程序,在我们双击的图像位置上绘制一个圆圈。
首先我们创建一个鼠标事件发生时执行的回调函数。 鼠标事件可以是任何与鼠标有关的动作,例如左键点击,左键抬起,左键双击等。它会传给我们每个鼠标事件的坐标 (x,y)。 有了这个事件和位置,我们可以做任何我们想要做的事情。 要列出所有可用的事件,请在 Python 终端中运行以下代码:
import cv2
events = [i for i in dir(cv2) if 'EVENT' in i]
print(events)
创建鼠标回调函数有一个特定的格式,到哪里都是一样的。 仅仅在功能上有所不同。 我们的鼠标回调函数只做了一件事,它在我们双击的地方绘制一个圆圈。 看下面的代码:
import cv2
import numpy as np
# 鼠标回调函数
def draw_circle(event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDBLCLK:
cv2.circle(img,(x,y),100,(255,0,0),-1)
# 创建一个内容为黑色图片的窗口,将函数绑定到窗口上
img = np.zeros((512,512,3), np.uint8)
cv2.namedWindow('image')
cv2.setMouseCallback('image',draw_circle)
while(1):
cv2.imshow('image',img)
if cv2.waitKey(20) & 0xFF == 27:
break
cv2.destroyAllWindows()
更进一步的展示
现在我们来做一个更好的应用程序。 在这里,我们通过像在 Paint 应用程序中一样拖动鼠标来绘制矩形或圆形(取决于我们选择的模式)。 所以我们的鼠标回调函数有两个部分,一个画矩形,另一个画圆。 这个具体的例子对于创建和理解对象跟踪,图像分割等一些交互式应用程序非常有帮助。
import cv2
import numpy as np
drawing = False # 鼠标按下后为True
mode = True # 如果为True, 画矩形。按'm'键转换为画圆
ix,iy = -1,-1
# 鼠标回调函数
def draw_circle(event,x,y,flags,param):
global ix,iy,drawing,mode
if event == cv2.EVENT_LBUTTONDOWN:
drawing = True
ix,iy = x,y
elif event == cv2.EVENT_MOUSEMOVE:
if drawing == True:
if mode == True:
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
else:
cv2.circle(img,(x,y),5,(0,0,255),-1)
elif event == cv2.EVENT_LBUTTONUP:
drawing = False
if mode == True:
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
else:
cv2.circle(img,(x,y),5,(0,0,255),-1)
接下来,我们必须将这个鼠标回调函数绑定到 OpenCV 窗口。 在主循环中,我们要为键 m 设置键盘绑定,以在矩形和圆形之间切换。
img = np.zeros((512,512,3), np.uint8)
cv2.namedWindow('image')
cv2.setMouseCallback('image',draw_circle)
while(1):
cv2.imshow('image',img)
k = cv2.waitKey(1) & 0xFF
if k == ord('m'):
mode = not mode
elif k == 27:
break
cv2.destroyAllWindows()
练习
在我们的最后一个例子中,我们绘制的是填充过的矩形。 请修改代码以绘制未填充的矩形。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论