- 1. 学习如何在你的电脑上配置OpenCV-Python环境!
- 1.1 开始了解OpenCV-Python
- 1.2 在 Windows 下安装 OpenCV-Python
- 1.3 在 Fedora 环境下安装 OpenCV-Python
- 1.4 在 Debian(Ubuntu)中配置 OpenCV-Python
- 1.5 在Docker中安装OpenCV-Python
- 1.6 在树莓派配置OpenCV-Python
- 2. OpenCV中的GUI功能
- 2.1 开始使用图像
- 2.2 开始使用视频
- 2.3 OpenCV 中的绘图函数
- 2.4 以鼠标为画笔
- 2.5 用滑块控制条做调色板
- 3. OpenCV中的GUI功能
- 3.1 图片基本操作
- 3.2 图像算术操作
- 3.3 性能评估与改进技巧
- 4. OpenCV中的图像处理
- 4.1 更换颜色空间
- 4.2 对图像进行几何变换
- 4.3 图像二值化处理
- 4.4 平滑图像
- 4.5 形态学转换
- 4.6 图像梯度
- 4.7 Canny边缘检测
- 4.8 图像金字塔
- 4.9.1 直方图:查找,绘制,分析
- 4.9.2 直方图均衡化
- 4.9.3 二维直方图
- 4.9.4 直方图反投影
- 4.10 OpenCV中的图像变换
- 4.10.1 傅立叶变换
- 4.11 模板匹配
- 4.12 霍夫直线变换
- 4.13 霍夫圆变换
- 4.14 基于分水岭算法的图像分割
- 4.14 使用 GrabCut 算法交互式前景提取
- 5. 特征检测和描述符
- 5.1 理解特征
- 5.2 Harris 角点检测
- 5.3 Shi-Tomasi 角点检测 & 适合用来跟踪的特征
- 5.4 介绍SIFT(尺度不变特征转换)
- 5.5 介绍SURF(加速稳健特征)
- 5.6 角点检测的FAST算法
- 5.7 BRIEF特征点描述算法
- 5.8 ORB 特征描述符(Oriented FAST and Rotated BRIEF)
- 5.9 特征匹配
- 5.10 特征匹配和使用单应性匹配来搜索物体
- 6. 视频分析
- 6.1 Meanshift和Camshift
- 6.2 光流
- 6.3 背景分割
- 7. 相机校准和3D重建
- 7.1 相机校准
- 7.2 姿势估计
- 7.3 极线几何
- 7.4 来自立体图像的深度图
- 8. 机器学习
- 8.1 K-最近邻算法
- 8.1.1 了解k-最近邻算法
- 8.1.2 使用kNN进行手写字符的OCR
- 8.2 支持向量机(SVM)
- 8.2.1 理解SVM
- 8.2.2 使用SVM的手写数据的OCR
- 8.3 K-Means聚类
- 8.3.1 理解 K-Means 聚类
- 8.3.2 OpenCV中的K-Means聚类
- 9. 计算摄影学
- 9.1 图像去噪
- 9.2 图像修复
- 9.3 高动态范围(HDR)
- 10. 目标检测
- 10.1 使用 Haar Cascades 的面部识别
- 11. OpenCV-Python 绑定
- 11.1 OpenCV-Python绑定如何工作?
4.6 图像梯度
目标
在这一章中,我们将学习:
- 查找图像梯度,边缘等。
- 我们将学习以下函数:
cv2.Sobel()
,cv2.Scharr()
,cv2.Laplacian()
等。
理论基础
OpenCV提供了三种类型的梯度滤波器或高通滤波器,Sobel,Scharr和Laplacian。
我们会一一介绍它们。
1. Sobel和Scharr导数
Sobel算子是一个联合了高斯平滑和差分的运算,因此它更能抵抗噪声。 您可以指定要取导数的方向,垂直方向或者水平方向(分别通过参数 yorder
和 xorder
)。 你也可以通过参数 ksize
来指定内核的大小。 如果 ksize = -1
,则使用3x3 Scharr滤波器,其结果比 3x3 Sobel 滤波器更好。 请参阅文档来看看使用的内核的特性。
2. 拉普拉斯导数
它计算由 $\Delta src = \frac{\partial ^2{src}}{\partial x^2} + \frac{\partial ^2{src}}{\partial y^2}$ 给出的,图像的拉普拉斯算子,其中每个导数都是用Sobel导数计算的,如果 ksize=1
,则使用以下内核进行过滤:
$$
kernel = \begin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}
$$
代码
下面的代码在单个图表中显示了所有操作的运算结果。 所有内核都是 5x5 大小。 输出图像的深度传递-1以得到 np.uint8
类型的结果。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('dave.jpg',0)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
一件重要的事
在我们的最后一个例子中,输出数据类型是 cv2.CV_8U
或 np.uint8
。 但是有一个小问题。 黑白转换为正斜率(正值),白转黑转换为负斜率(负值)。 所以当你把数据转换成np.uint8时,所有的负斜率都会变成零。 简而言之,你会忽略了这个边缘。
如果黑到白和白到黑两边你都想检测,更好的选择是保持输出数据类型的一些更多位数的形式,如cv2.CV16S
,cv2.CV64F
等,取其绝对值,然后转换回 cv2.CV_8U
。
下面的代码演示了水平Sobel滤波器的这个过程和结果的差异。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('box.png',0)
# Output dtype = cv2.CV_8U
sobelx8u = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
# Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U
sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()
更多资源
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论