返回介绍

ImageMath Module

发布于 2021-01-07 09:04:44 字数 5072 浏览 962 评论 0 收藏 0

The ImageMath module can be used to evaluate “image expressions”. The module provides a single eval function, which takes an expression string and one or more images.

Example: Using the ImageMath module

import Image, ImageMath

im1 = Image.open("image1.jpg")
im2 = Image.open("image2.jpg")

out = ImageMath.eval("convert(min(a, b), 'L')", a=im1, b=im2)
out.save("result.png")
PIL.ImageMath.eval(expression, environment)

Evaluate expression in the given environment.

In the current version, ImageMath only supports single-layer images. To process multi-band images, use the split() method or merge() function.

参数:
  • expression – A string which uses the standard Python expression syntax. In addition to the standard operators, you can also use the functions described below.
  • environment – A dictionary that maps image names to Image instances. You can use one or more keyword arguments instead of a dictionary, as shown in the above example. Note that the names must be valid Python identifiers.
返回:

An image, an integer value, a floating point value, or a pixel tuple, depending on the expression.

Expression syntax

Expressions are standard Python expressions, but they’re evaluated in a non-standard environment. You can use PIL methods as usual, plus the following set of operators and functions:

Standard Operators

You can use standard arithmetical operators for addition (+), subtraction (-), multiplication (*), and division (/).

The module also supports unary minus (-), modulo (%), and power (**) operators.

Note that all operations are done with 32-bit integers or 32-bit floating point values, as necessary. For example, if you add two 8-bit images, the result will be a 32-bit integer image. If you add a floating point constant to an 8-bit image, the result will be a 32-bit floating point image.

You can force conversion using the convert(), float(), and int() functions described below.

Bitwise Operators

The module also provides operations that operate on individual bits. This includes and (&), or (|), and exclusive or (^). You can also invert (~) all pixel bits.

Note that the operands are converted to 32-bit signed integers before the bitwise operation is applied. This means that you’ll get negative values if you invert an ordinary greyscale image. You can use the and (&) operator to mask off unwanted bits.

Bitwise operators don’t work on floating point images.

Logical Operators

Logical operators like and, or, and not work on entire images, rather than individual pixels.

An empty image (all pixels zero) is treated as false. All other images are treated as true.

Note that and and or return the last evaluated operand, while not always returns a boolean value.

Built-in Functions

These functions are applied to each individual pixel.

abs(image)

Absolute value.

convert(image, mode)

Convert image to the given mode. The mode must be given as a string constant.

float(image)

Convert image to 32-bit floating point. This is equivalent to convert(image, “F”).

int(image)

Convert image to 32-bit integer. This is equivalent to convert(image, “I”).

Note that 1-bit and 8-bit images are automatically converted to 32-bit integers if necessary to get a correct result.

max(image1, image2)

Maximum value.

min(image1, image2)

Minimum value.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文